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The rapid evolution of wireless communication systems, particularly the development
of 5G and the emerging 6G networks, has ushered in a new era of connectivity
characterized by ultra-high data rates, low latency, and reliable communication.These
advancements necessitateadvanced modulation techniques, such as Quadrature
Amplitude Modulation (QAM), to achieve the spectral efficiency required for modern
applications. However, high-order QAM constellations, while enabling efficient
bandwidth utilization, are inherently more vulnerable to noise, interference, and
channel-induced distortions, leading to inter-symbol interference (ISI) and increased
bit error rates (BER). Effective equalization techniques are therefore indispensable to
mitigate these effects and maintain robust communication performance. Blind
equalization has emerged as a vital solution to address these challenges, as it
eliminates the need for training sequences, thereby improving bandwidth efficiency.
Among the various blind equalization methods, the Multi-Modulus Algorithm (MMA)
has proven particularly effective for high-order QAM modulation. In this paper, we
introduce an enhanced MMA algorithm designed to address these limitations and
optimize performance for 5G and 6G communication systems. The proposed
algorithm incorporates several key innovations, such as Dynamic Step Size
Adaptationand Advanced Weight Initialization. The effectiveness of the proposed
algorithm is demonstrated through extensive MATLAB simulations for high-order
QAM schemes under challenging multipath fading and noise conditions. Performance
metrics such as BER are compared with those of conventional MMA
implementations and other state-of-the-art blind equalization techniques. The results
indicate that the proposed algorithm significantly outperforms traditional methods,
achieving faster convergence, lower BER, and greater robustness to noise and
interference.
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1. Introduction

The rapid advancements in wireless communication technologies have revolutionized
how information is transmitted and received, enabling a connected world with
unprecedented speed, reliability, and efficiency [1]. From the advent of 5G networks to the
exploration of 6G and beyond, there is a growing demand for high data rates, low latency,
and seamless connectivity [2]. These next-generation communication systems aim to
support diverse applications such as autonomous vehicles, virtual reality, smart cities, and
ultra-reliable low-latency communication (URLLC), all of which place immense pressure
on network infrastructure and modulation techniques [3].

Among the various modulation schemes,Quadrature Amplitude Modulation (QAM)
stands out as a cornerstone in achieving the high spectral efficiency needed for 5G and 6G
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networks [4]. By combining amplitude and phase modulation, QAM maximizes the use of
available bandwidth, transmitting multiple bits per symbol. Higher-order QAM, such as 64-
QAM and 256-QAM, is particularly beneficial for meeting the data-intensive requirements
of modern applications [5]. However, these benefits come at the cost of increased
sensitivity to noise, interference, and channel distortions, posing significant challenges to
reliable data transmission.

In this context, signal equalization becomes a critical component of wireless
communication systems [6]. Equalization mitigates the detrimental effects of inter-symbol
interference (ISI) and channel-induced distortions that can degrade signal quality [7].
Traditional equalization methods often rely on training sequences, which consume valuable
bandwidth and reduce system efficiency [8]. This limitation has driven the development of
Blind Equalization Techniques, which do not require prior knowledge of the transmitted
signal [9]. By estimating and correcting distortions based solely on the received signal,
blind equalization techniques enhance system efficiency and robustness [10].

Among the blind equalization algorithms, the Multi-Modulus Algorithm (MMA) has
gained significant attention due to its effectiveness in handling QAM signals [11]. MMA
builds upon the Constant Modulus Algorithm (CMA) by introducing separate cost
functions for the in-phase and quadrature components of the signal. This approach allows
MMA to achieve superior performance in reducing ISI and aligning received symbols with
their ideal constellation points [12]. MMA's ability to work seamlessly with high-order
QAM constellations makes it a preferred choice for modern communication systems [13].

In this paper, we introduce an enhanced MMA method designed specifically to address
the demanding requirements of 5G and 6G communication systems. The proposed
algorithm incorporates several key improvements, including dynamic step size adaptation,
tailored initialization for equalizer weights, modulation-specific optimization, and precise
delay evaluation. These enhancements provide faster convergence, improved stability, and
better performance under varying noise and channel conditions compared to traditional
MMA implementations.

The proposed approach not only mitigates ISI effectively but also ensures robust
performance across higher-order QAM constellations, thereby addressing critical
challenges in wireless communication. The findings underscore the potential of the
advanced MMA algorithm to significantly enhance system performance, paving the way for
its integration into next-generation communication technologies.

The remainder of the manuscript is organized as follows. The literature review is
presented in Section 2. The system model is described in Section 3. The simulation findings
and discussions are covered in Section 4, and the final conclusion is presented in Section 5.

2. The literature review

Here we’ll have a look at the work done in the field of blind equalization to eliminate ISI.
Paper [14] discussed semi-blind and blind equalizers for fading MIMO systems and
proposed channel-specific methods. It was found that semi-blind and blind algorithms
outperform training-based equalizers in Ricean environments, whereas training-based
equalizers are more efficient in Rayleigh channels. The article also identified the optimal
training size for semi-blind and training algorithms. In paper [15], H. Bellahsene and al, use
the calculation of maximum kurtosis to determine the optimal time domain equalizer (TEQ)
and synchronization delay for the maximum signal-to-noise ratio shortening (MSSNR)
algorithm and compare the optimal filters obtained by other methods and the proposed
method based on maximum kurtosis. Paper [16] compared Sato’s Algorithm and Godard-
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based blind algorithms for PAM signals and found that using variable values for the tap
adjusting coefficient and step size based on iterations could speed up convergence and
eliminate maladjustments. Numerous studies have proposed the use of CMA or MMA
algorithms. In a paper [17], J. van der Veen and al, introduced a combination of the MRE
algorithm with the constant modulus algorithm (CMA) for single-input multiple output
(SIMO) systems, enhancing its performance in blind equalization. Paper [18] developed a
blind equalization method that outperforms supervised algorithms without regard to QAM
order, providing faster convergence and stability gains over decision-directed algorithms. In
the paper [19], the authors compared the performance of CMA, stop-and-go decision
directed, and Wei Rao’s CMA for QAM schemes in a linear band-limited channel. They
concluded that the combined channel and equalizer impulse response, after convergence,
corresponds to the ideal channel impulse response. The stop-and-go method outperformed
other algorithms in terms of MSE and convergence rate.Paper [20] discussed the Multi
Modulus Algorithm (MMA), a modified variation of CMA that does not require a separate
phase recovery system. This new model demonstrated improved data speeds and lower
BER. Paper [21] described a method for blind multi-modulus equalization that calculates
expenses using the Constant Modulus Algorithm and switches to MMA at specified
thresholds. This iterative procedure is repeated until a preset value is reached, and the
equalization coefficients are changed accordingly. Paper [22] reviews four equalization
algorithms, two training-based and two blind, for 16-QAM and 64-QAM modulation
schemes to address Inter-Symbol Interference (ISI) in wireless communication systems.
The study compares the performance of these algorithms in terms of bit error rate (BER),
residual ISI, and mean square error (MSE) through simulations. Results show that the
Recursive Least Squares (RLS) algorithm slightly outperforms the Least Mean Square
(LMS) algorithm at higher signal-to-noise ratios. The paper concludes by suggesting future
comparisons of these algorithms to determine the best fit for emerging 5G and 6G
communication technologies.Paper [23] introduces the VSS-FC-MMA algorithm, an
enhancement of the FC-MMA adaptive equalization method using a varying step size to
improve equalization performance and reduce inter-symbol interference (ISI) in non-
constant modulus signal transmission. While FC-MMA enhances convergence speed, it
suffers in steady-state performance due to its fixed step size. The proposed VSS-FC-MMA
improves steady-state performance by adjusting the step size dynamically. Simulation
results show that VSS-FC-MMA outperforms FC-MMA in terms of residual ISI, mean
square error (MSE), and symbol error rate (SER), though it has a 1.7x slower convergence
time. Paper [24] introduces the Manifold Optimization Aid Modified Multi-Modulus
Algorithm (MO-M3A) for improving MIMO blind detection, which aims to reduce training
overhead while addressing performance issues and slow processing speeds. The MO-M3A
leverages a novel weighted multi-modulus loss function to mitigate interference in the
traditional MMA loss function, enhancing signal recovery. By restricting the solution to the
Stiefel manifold and applying the Riemannian gradient method, the algorithm simplifies the
problem and accelerates iterations. Simulation results show that MO-M3A achieves better
bit error rate (BER) performance and reduces processing burden compared to conventional
methods.
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3. System model

3.1.Quadrature Amplitude Modulation (QAM)
QAMis a foundational technique in modern digital communication systems that

combines amplitude and phase modulation to maximize data transmission efficiency. By
leveraging both in-phase (I) and quadrature (Q) components, QAM enables the
transmission of multiple bits per symbol, thus achieving high spectral efficiency [25].

The M-QAM variant, where "M" represents the number of unique symbols in the
constellation, further enhances efficiency by encoding multiple bits per symbol. As M
increases, more bits can be transmitted per symbol [26]. For example, in 16-QAM, each
symbol encodes 4 bits, while in 64-QAM and 256-QAM, each symbol represents 6 and 8
bits, respectively, leading to significantly higher data rates.

In M-QAM, the modulated signal is expressed as a linear combination of two orthogonal
carrier waves, sinusoidal functions modulated by the I and Q components. The components
correspond to the real and imaginary parts of a complex signal, which are represented as
distinct points on a constellation diagram. The mathematical representation of a symbol is
given by:

��,� = �� + � �� (1)

Where:
 �� and �� are the amplitude levels for the in-phase and quadrature components,

respectively.
 � is the imaginary unit.

The time-domain representation of the modulated signal can be expressed as:

� � = � � cos 2��� � − � � ��� (2��� �) (2)
Where:

 ��is the carrier frequency.
 � � and � � are the baseband signal components representing the data to be

transmitted.

The number of bits per symbol is defined as ���2 � , allowing M-QAM to support
increasingly dense constellations as � grows.
While higher-order M-QAM schemes (e.g., 256-QAM) enable increased data rates by
utilizing denser constellations, they also introduce greater vulnerability to noise and
interference. This creates a critical trade-off between spectral efficiency and bit error rate
(BER) performance. The susceptibility to noise increases as the distance between
constellation points decreases, making error correction and channel equalization essential in
maintaining communication reliability.

These trade-offs are particularly relevant in advanced applications such as:
 5G Networks: Utilizing higher-order QAM, such as 64-QAM, to meet the

stringent requirements of high data rates, low latency, and efficient bandwidth
utilization [27].
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 6G Systems: Expected to incorporate ultra-high-order QAM (e.g., 256-QAM) for
terahertz (THz) communications, supporting data-intensive applications [28].

3.2. The Multi-Modulus Algorithm (MMA)
The Multi-Modulus Algorithm (MMA) is an extension of the Constant Modulus

Algorithm (CMA), specifically designed to handle quadrature amplitude modulation (QAM)
and quadrature phase-shift keying (QPSK) signals [29]. MMA operates by independently
equalizing the in-phase (I) and quadrature (Q) components of the signal, which enables it to
address inter-symbol interference (ISI) and channel distortions more effectively. This
separation facilitates minimizing symbol dispersion around their ideal constellation points
in each signal dimension [30].

MMA achieves this by minimizing two distinct cost functions, one corresponding to the
I-component and the other to the Q-component of the signal. The cost function is expressed
as follows:

���� � = � [ � � 2 − ��
2 + ( � � 2 − ��)2] (3)

 �(�) and �(�) are the in-phase and quadrature components of the output signal
�(�) at a time �.

 �� and �� are constants representing the target moduli for the in-phase and
quadrature components, determined by the specific signal constellation.

 �represents the vector of equalizer coefficients.
 � ∙ is the expectation operator.

To minimize this cost function, the MMA algorithm uses a gradient descent method to
iteratively adjust the equalizer coefficients. The coefficient update rule is given by:

��+1 = �� − � . ∇����(��) (4)

 �is the step size (controlling the convergence speed of the algorithm).
 ∇���� �� is the gradient of the cost function concerningthe filter coefficients

��  .

This iterative adjustment aims to reduce distortion and align the recovered symbols
closely with their respective constellation points.

MMA has proven to be a robust technique for blind equalization in mobile
communication systems, particularly forQAM modulation schemes. These modulation
methods are extensively employed in 5G networks due to their high data rate capabilities.
In the context of massive MIMO systems in 5G, MMA effectively mitigates channel
distortions, ensuring reliable and low-latency communication [31].

Looking ahead to 6G networks, the algorithm is expected to play a pivotal role in
enabling terahertz (THz) communications and supporting emerging applications requiring
ultra-high data rates and minimal latency. This includes immersive technologies, such as
holographic communications and extended reality (XR), further emphasizing MMA's
relevance in advancing next-generation communication systems [32].
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In this study, we propose an advanced MMA method incorporating several key
enhancements to improve blind equalization and optimize communication system
performance. The primary distinctions between our approach and the standard MMA
method are as follows:

1. Adaptive Step Size: Unlike the standard MMA, which uses a fixed step size (� )
throughout the algorithm.Our method dynamically adjusts the step size based on
theinstantaneous errorΦ� using a linear decay formula:

� = � ∙ (1 − 0.1 ∙ Φ� ) (5)

This adaptation accelerates convergence and minimizes oscillations or instability,
especially for higher modulation orders such as 256-QAM.

2. Equalizer Weight Initialization: The weights of the equalizer are initialized with
zeros, except for the 21st weight, which is set to 1. The 21st weight set to 1
introduces a targeted offset that helps the algorithm establish a baseline for
equalization, particularly useful in dispersive or complex channel environments.
Standard MMA methods often rely on random or constant initialization without
this specificity.

3. Modulation-Specific Optimization: Our method employs different step sizes for
each QAM modulation order (16, 64, 256). This tailored approach enables precise
control of stability and performance for varying modulation levels, a feature not
typically available in standard MMA implementations.

4. Lower Bound for Step Size:The step size is constrained to a minimum value 1 ×
10−12 , preventing it from becoming excessively small and slowing down the
equalization process. This safeguard is not part of the standard MMA method,
where the step size remains fixed.

5. Delay Evaluation:Our implementation evaluates the delay between the equalized
signal and the original signal using cross-correlation. This delay is accounted for
in the bit error rate (BER) calculation, ensuring accuracy. Standard MMA
implementations often overlook this delay, leading to less precise BER evaluations.

The proposed program includes specific enhancements that make the MMA more adaptable
and optimized for high-order modulation. These improvements, such as dynamic step size
adjustment, targeted weight initialization, modulation-specific optimizations, and precise
BER calculations, contribute to faster convergence and improved system performance in
noisy channel conditions. These advancements position our method as a robust solution for
modern communication systems, particularly in the context of 5G and future 6G networks,
where high data rates and reliable performance are critical.
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4. Simulation Results and discussions

In this section, we present the MATLAB simulation results obtained using the advanced
MMA blind equalization method for M-QAM modulation schemes. The performance
metric evaluated is the Bit Error Rate (BER), which measures the ratio of incorrectly
received bits to the total number of transmitted bits.

The obtained results are then compared with the findings reported in the literature,
particularly with the results in the paper by Ahmed et al. (2019) [22], which reviews
various training and blind equalization algorithms for wireless communications.

The simulation was conducted using a M-QAM (16-QAM, 64-QAM, and 256-
QAM)modulation scheme. A total of 106 symbols were transmitted over a multi-path
fading channel characterized by an impulse response of h=[0.2,0.9,0.3], simulating typical
5G channel conditions. The signal-to-noise ratio (Eb/N0) was varied from -10 to 40 dB to
observe performance across different noise levels. Additive White Gaussian Noise (AWGN)
was added to the transmitted signal, with noise variance adjusted according to the specific
Eb/N0 values.

Figures 1,2, and 3, depict the BER performance of the MMA algorithm for QPSK, 16-
QAM, 64-QAM, and 256-QAM modulation schemes, respectively.

Figure 1: BER of MMA algorithm for a 16-QAM constellation.

For 16-QAM (Figure 1), the algorithm achieves a rapid BER decrease, reaching values
below 10−6 at an SNR of 22 dB, showcasing excellent noise resilience for lower-order
modulation schemes.

For 64-QAM (Figure 2), the MMA algorithm continues to perform robustly, with the
BER dropping below 10−6at an SNR of 28 dB. However, the BER curve shifts slightly to
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the right compared to 16-QAM, reflecting the higher complexity and susceptibility to errors
associated with 64-QAM.

Similarly, for 256-QAM (Figure 3), the MMA algorithm maintains strong performance,
achieving a BER below 10−6 at an SNR of 38dB. The further rightward shift of the curve
highlights the additional challenges posed by the higher complexity and error rates inherent
in 256-QAM. These results underscore the advanced MMA algorithm's adaptability and
effectiveness across varying modulation orders in mitigating BER under different SNR
conditions.

Figure 2: BER of MMA algorithm for a 64-QAM constellation.

Figure 3: BER of MMA algorithm for a 256-QAM constellation.
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Figures 4, 5, 6,and 7, are the results of the paper by Ahmed et al. (2019) [22], which
reviews various training and blind equalization algorithms for wireless communications.

Figure 4 illustrates the BER performance of the MMA and SCA algorithms for a 16-
QAM modulation scheme over varying Signal-to-Noise Ratios (SNR). By the time the SNR
reaches 20 dB, the MMA-16QAM achieves a BER close to 10−4 , and the SCA-16QAM
achieves a BER equal a 10−2.

Figure 4: BER comparison of MMA and SCA algorithm for 16-QAM constellation [22].

Figure 5: BER comparison of LMS and RLS algorithm for a 16-QAM constellation[22].
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Figure 5 illustrates the BER performance of the LMS and RLS algorithms for a 16-QAM
modulation scheme over varyingSNR. By the time the SNR reaches 20 dB, the LMS and
RLS achieve a BER close to 10−4.

Figure 6: BER comparison of MMA and SCA algorithm for a 64 QAM constellation[22].

Figure 6 compares the BER performance of MMA and SCA for a 64-QAM modulation
scheme. The MMA algorithm shows a consistent reduction in BER, reaching below 10−4 at
an SNR of 30 dB.

Figure 7 compares the BER performance ofLMS and RLS for a 64-QAM modulation
scheme. By the time the SNR reaches 25 dB, the LMS and RLS achieve a BER below to
10−3.

Figure 7: BER comparison of LMS and RLS algorithm for a 64-QAM constellation[22].
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When comparing the curves MMA, SCA, LMS, and RLS, to the blue curve (Advanced
MMA), it's evident that the proposed MMA algorithm demonstrates excellent performance
for all order modulation schemes, the proposed MMA algorithm advantage becomes clear
as we move towards more complex modulations like 64-QAM.

For example, at an SNR of 28 dB, the MMA-64QAM achieves a BER close to 10−4 ,
whereas the proposed MMA algorithm for 64-QAM achieves a BER of 10−6 .This
difference emphasizes the effectiveness of the proposed MMA algorithm in maintaining
low error rates in challenging conditions, making it a preferable choice for scenarios
requiring higher data throughput and greater efficiency in 5G/6G mobile communications.

5. Conclusion

The unprecedented demands of next-generation wireless communication systems,
particularly 5G and the forthcoming 6G networks, require innovative solutions to address
the challenges of high data rates, spectral efficiency, and reliable signal recovery in the
presence of noise and interference. QAM, with its ability to encode multiple bits per
symbol, has become a cornerstone of these systems. However, the adoption of high-order
QAM constellations (e.g., 64-QAM and 256-QAM) introduces greater susceptibility to
channel impairments such as inter-symbol interference (ISI), necessitating the development
of advanced equalization techniques. The MMA has demonstrated significant potential due
to its capacity to independently equalize the in-phase (I) and quadrature (Q) components of
QAM signals. In this paper, we presented an enhanced MMA algorithm designed to
optimize performance in 5G and 6G communication systems. The proposed algorithm
introduces several key improvements, including dynamic step size adaptation,and an
accurate delay evaluation mechanism. These enhancements address critical issues in
traditional MMA approaches, offering faster convergence, reduced residual ISI, improved
stability, and lower bit error rates (BER) under diverse channel conditions. Through
extensive simulations, the proposed algorithm has been evaluated across various QAM
modulation schemes (16-QAM, 64-QAM, and 256-QAM) in multi-path fading channels
with additive white Gaussian noise (AWGN).The proposed algorithm's ability to combine
efficiency, adaptability, and robustness positions it as a promising solution for modern
5G/6G communication challenges.

Although the proposed MMA algorithm represents a significant advance in blind
equalization for QAM signals, further research is needed to explore its potential in even
more demanding scenarios. For example, future work could focus on integration with
artificial intelligence (AI) and application in THz bands.

Thus, the improved MMA algorithm proposed in this work represents a robust and
scalable solution to the challenges of blind equalization in modern communication systems.
Its integration into 5G and 6G networks will play a key role in realizing the full potential of
these technologies, enabling a future of seamless, high-performance wireless
communication.

References

[1] Ranjan, P., Rao, R. S., Kumar, K., & Sharma, P. (2022). Wireless communication: Advancements and
challenges. CRC Press.



S. Latrecheet al:Blind MMA Equalization for QAM modulation in 5G/6G communications

480

[2] Salahdine, F., Han, T., & Zhang, N. (2023). 5G, 6G, and Beyond: Recent advances and future
challenges. Annals of Telecommunications, 78(9), 525-549.

[3] Yang, Z., Chen, M., Wong, K. K., Poor, H. V., & Cui, S. (2022). Federated learning for 6G: Applications,
challenges, and opportunities. Engineering, 8, 33-41.

[4] Haque, T., Elkotby, H., Cabrol, P., Zhang, Y., Pragada, R., & Castor, D. (2021, April). A 256-QAM
backscatter transponder architecture using delta-sigma load modulation for 6G ultra-low-power IoT devices.
In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring) (pp. 1-7). IEEE.

[5] Singya, P. K., Shaik, P., Kumar, N., Bhatia, V., &Alouini, M. S. (2021). A survey on higher-order QAM
constellations: Technical challenges, recent advances, and future trends. IEEE Open Journal of the
Communications Society, 2, 617-655.

[6] Li, J., Zheng, W. X., Liu, M., Chen, Y., & Zhao, N. (2024). Robust Blind Equalization for NB-IoT Driven
by QAM Signals. IEEE Internet of Things Journal.

[7] Arabian, F., Nordin, G. P., & Rice, M. (2020, February). On polarization dependent equalization in 5G
mmWave systems. In 2020 International Conference on Computing, Networking and Communications
(ICNC) (pp. 1058-1062). IEEE.

[8] Isnawati, A. F., Afandi, M. A., Ni’amah, K., & Prasetyo, H. A. (2024). GFDM-OQAM Performance
Analysis Using Linear Equalization for Audio Transmission. Journal of Communications, 19(1).

[9] Mei, R., Wang, Z., & Hu, W. (2022). Robust blind equalization algorithm using convolutional neural
network. IEEE Signal ProcessingLetters, 29, 1569-1573.

[10] Resende, D. F., Silva, L. R. M., Nepomuceno, E. G., & Duque, C. A. (2023). Optimizing Instrument
Transformer Performance through Adaptive Blind Equalization and Genetic Algorithms. Energies, 16(21),
7354.

[11] Yang, J., Zhang, Q., Luo, Y., & Jiang, K. (2022). A momentum fractional order multimodulus blind
equalization algorithm. Digital Signal Processing, 126, 103522.

[12] Ren, H., Xu, S., Lyu, Z., Li, Y., Yang, Z., Xu, Q., ... & Sun, H. B. (2024). Terahertz flexible multiplexing
chip enabled by synthetic topological phase transitions. National Science Review, nwae116.

[13] Yang, J., Zhang, Q., Luo, Y., & Teng, M. (2024). Robust multimodulus blind equalization algorithm for
multilevel QAM signals in impulsive noise. Digital Signal Processing, 149, 104483.

[14] Kavitha, V., and Sharma, V. (2005). Comparison of training, blind and semi blind equalizers in MIMO
fading systems using capacity as measure. In IEEE international conference on acoustics, speech, and signal
processing, 2005. Proceedings (ICASSP’05) (Vol. 3, pp. iii 589). IEEE.

[15] Bellahsene, H., Rouvaen, J. M., and Djeddi, M. (2009). Maximum kurtosis estimation of the optimal filter
and convergence step size parameter in blind adaptive TEQ for multicarrier systems. European transactions
on telecommunications, 20(3), 311-321.

[16] Suthendran, K., and Arivoli, T. (2014). Performance comparison of blind equalization algorithms for
wireless communication. International Journal of Computer Applications, 85(13), 1–6.

[17] A.- J. van der Veen and A. Trindade,“ Combining blind equalization with constant modulus properties, ”in
34th Asilomar Conference on Signals, Systems and Computers, vol. 2, Pacific Grove, CA, USA, Oct.2000,
pp. 1568–1572.

[18] Mendes Filho, J., Silva, M. T. M., and Miranda, M. D. (2011). A family of algorithms for blind equalization
of QAM signals. In ICASSP (pp. 3388–3391).

[19] Wahab, A., Ahmed, S., Javed, N., and Khan, A. (2016). Performance analysis of training and blind
equalization algorithms for wireless communication using 64- QAM. In Proceedings of 2nd international
multi-disciplinary conference (Vol. 19, p. 20).

[20] Arivukkarasu, S., and Malar, R. (2015). Multi modulus blind equalizations for quadrature amplitude
modulation. International Journal of Innovative Research in Computer and Communication Engineering,
3(3), 2301–2305.

[21] Ram Babu, T., and Kumar, P. R. (2010). Blind equalization using constant modulus algorithm and
multimodulus algorithm in wireless communication systems. International Journal of Computer
Applications, 1(3), 50–55.

[22] Ahmed, S., Khan, Y., and Wahab, A. (2019). A review on training and blind equalization algorithms for
wireless communications. Wireless Personal Communications, 108, 1759 1783.

[23] Lim, S. G. (2019). A Performance Improvement of FC-MMA Blind Equalization Algorithm based on
Varying Step Size. The Journal of the Institute of Internet, Broadcasting and Communication, 19(5), 101-
106.

[24] Chen, Y., Dong, B., Gao, P., and Xiong, W. (2024). Fast MIMO Blind Detection via Modified MMA
Approach Over the Stiefel Manifold. IEEE Wireless Communications Letters.

[25] Singya, P. K., Shaik, P., Kumar, N., Bhatia, V., &Alouini, M. S. (2021). A survey on higher-order QAM
constellations: Technical challenges, recent advances, and future trends. IEEE Open Journal of the
Communications Society, 2, 617-655.

[26] Singya, P. K., Shaik, P., Kumar, N., Bhatia, V., &Alouini, M. S. (2020). A survey on design and
performance of higher-order QAM constellations. arXiv preprint arXiv:2004.14708.



J. Electrical Systems 20-4 (2024): 469-481

481

[27] Kamurthi, R. T., Chopra, S. R., & Gupta, A. (2020, March). Higher order QAM schemes in 5G UFMC
system. In 2020 international conference on emerging smart computing and informatics (ESCI) (pp. 198-
202). IEEE.

[28] Tadesse, E. W., Annamalai, P., & Mengistu, F. G. (2023, December). New Radio Polar Coding Performance
Enhancement Study Using QAM and APSK Modulation Schemes for 6G. In 2023 International Conference
on Electrical, Communication and Computer Engineering (ICECCE) (pp. 1-6). IEEE.

[29] Jha, S. (2022). MIMO Equalization for Space Division Multiplexing in Optical Communications (Master's
thesis, Technische Universität Darmstadt).

[30] Zhang, J., Wu, W., & Ge, X. (2021). Time Reverse Equalization Algorithm for 16 QAM Coherent Optical
Communication Systems. IEEE Access, 9, 60753-60763.

[31] Badi, I., Badi, H., Khamjane, A., El Moutaouakil, K., & Bahri, A. (2023). Supervised identification and
equalization of transmission channel using reproducing kernel Hilbert space. Radioelectronic and Computer
Systems, (1), 101-111.

[32] Xi, Z. (2023). Analysis of Adaptive Equalization Algorithms. Highlights in Science, Engineering and
Technology, 70, 295-305.


