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This paper presents a method for neural network sliding mode control design to track the
maximum power point (MPPT) for a photovoltaic pumping system. For the best use, the
photovoltaic (PV) panel must operate at its maximum power point (MPP). Sliding mode control
(SMC)  can  be  used  for  non  linear  systems  with small uncertainties. However, for complex
nonlinear systems, the uncertainties are large and produce higher amplitude of chattering due to
the higher switching gain. In this work, sliding mode control approach is combined with the
neural  network  (NN)  to adjust the duty cycle control law. NN is used for the prediction of
model unknown parts. The proposed control law uses the full state of the system. However only
the rotation speed variable is available for measurement. For this particular task, a robust
differentiator via SMC is employed. Performance of the proposed controller is compared with
the traditional SMC and investigated by simulation.

Keywords: Sliding mode control, neural network, photovoltaic pumping system, maximum power
point tracking, robust differentiator.

1. Introduction

Solar energy is one of the most important renewable energy sources in the world. The
use of photovoltaic as the power source for pumping is considered as one of the most
promising areas of PV application. Pumping photovoltaic systems are particularly suitable
for water supply in remote areas where no electricity supply is available.

The efficiency of the PV pumping system depends on several climatic factors such as the
solar radiation, the ambient temperature and the state of the solar panels [1]. Since the
maximum power point varies with radiation and temperature, it is difficult to maintain
optimum matching at all radiation levels. In order to improve the performance of a PV
pumping system, a DC–DC boost converter known as a maximum power point tracker
(MPPT) is used to match continuously the solar cell power to the environment changes. In
the last decade, many algorithms and controllers have been developed for the MPPT [2],
[3]. It should be noted that many of them cannot reduce the tracking error and accomplish
the operation with accuracy process. Since the systems dynamics of photovoltaic pumping
are highly nonlinear and usually contain uncertain elements, the system’s control
performance can be affected seriously [4]. Many methods to control the dynamics system
have been made to get an appropriate solution to achieve the precise tracking control; these
are namely fuzzy control [5], neural network [6], and sliding mode control (SMC) [7]. The
SMC with boundary layer approach can be used to achieve robust tracking. However, in the
presence of large uncertainties, the controller has a higher switching gain and produces
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higher amplitude of chattering. In this paper, sliding mode control approach is combined
with the neural network (NN) to adjust the duty cycle control law of the converter. NN is
used for the prediction of model unknown part and hence enables a lower switching gain to
be  used.  As  a  result,  the  SMC  with  boundary  layer  approach  can  be  used  to  ensure  the
better tracking performance without any oscillatory behaviour. The network weights are
adjusted during online implementation by using the gradient descent method (GD) [8]. The
state observation is one of the most essential problems in modern control theory [9]. Many
schemes for the estimation of states variables have been proposed in recent years. Some of
these methods are based on nonlinear observer theory such as high gain observer, sliding
mode observer and backstepping observer. In order to improve the performance of
observers, another attractive method for the estimation is the differentiators via SMC.
Differentiators are very useful tools to determine and estimate signals [10], [11].

The proposed control Motivated by using the robust differentiator (RDF) consists of the
so called equivalent control with added robust control term. The neural network predicted
unknown terms are incorporated in the equivalent control component. As a result, the
responses will be fast without any chattering problems.

This study is organized as follows. The next section is PV pumping system description.
In Section 3, the sliding mode controller with a robust differentiator via SM is presented. In
section 4 the proposed neural network sliding mode controller is shown.  Section 5 presents
the simulation results. Finally, a conclusion is given.

2. Photovoltaic pumping system

2.1. System description

The Figure.1 shows the structure of the considered PV pumping system

Figure1. Block diagram of photovoltaic pumping

Photovoltaic generator model

The characteristic equation for the current and voltage of PV module is given as follows
[5], [7], [12].
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where :
phI   – Photo current, 0I – cell reverse saturation current, rI 0 – cell saturation current at

rT , SCRI – short circuit current at 298.15 K and 1 kW/m2, IK – short circuit current
temperature coefficient at SCRI , –  solar  irradiation  in  W/m2, 0GE – band gap for
silicon, –ideality factor, rT – reference temperature, T – cell temperature, K –
Boltzmann’s constant and q – electron charge.

In this system we considered a DC motor of nominal tension 400V and nominal current
12.2A .We then need a PVG constituted by 20SN  modules in series helps us to rise the
required direct voltage value. And 5PN  in parallel helps us to rise direct current value.

The  optimum  voltage  of  each  panel  is  17V  and  the  optimum  current  is  3.14,  then  the
power of PV generator is W514.32017 is near to the motor’s power
( WmP 2.12400 ).

The current of PVG is [7]:

shg

gsgg
gsggggphgg R
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IRVAIII 1exp0                                                       (2)

Where:

gV :  The PVG output voltage, gI : The PVG output current,
S

g N
AA –  the  PVG

constant, s
P

S
sg R

N
NR : The PVG series resistance, sh

P

S
shg R

N
NR : The PVG parallel

resistance, phPphg INI : The photocurrent of the PVG, 00 INI Pg :The saturation current

of the PVG, SN : The number of PV connected in series and PN : the number of parallel
paths.

Boost converter
The DC-DC boost converter presented in Figure 2 as voltage elevator takes an

intermediate position between the generator and the motor in order to regulate its supply
with a maximum power by regulating its gain. It is containing at least two semiconductor
switches (a diode and the switch is typically MOSFET).

Figure2. Circuit of boost converter

The dynamics of this converter operating in continuous conduction mode is given as
follows:
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Where 0L  – the inductor of the converter, 0C  – the output capacitor of the converter,
0r – the inductor equivalent resistance and DSR  – the MOSFET resistance ON. The switch

state is also governed by a control signal with a period T and a duty cycle .

The group motor pump model
The dynamics of a DC motor and centrifugal pump may be expressed as:

C
m

mm E
t

ILRIV                                                                                                        (5)

eC KE                                                                                                                             (6)
The mechanical equation of the system is given by:

t
JKIK rmm

2                                                                                                            (7)

Where  and J  are respectively the rotation speed   and the moment of inertia of the
group , mK is the constant of the electric couple, L is the inductance of the rolling-up of
the led, R is the resistance of motor , rK  Coefficient of proportionality and eK  is the
strength’s constant against electrometrical. The useful power of the motor is given by:

3
rKP                                                                                                                             (8)

Instead of maximizing the PVG power, we will maximize the pump power, i.e. his
rotation speed, in order to maximise the water flow.

2.2. Dynamic model of the system in the state space

Let define: 1x , 2x  and 3x . By the combination of various equations we
succeed in following model
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Where u  is the control law and  is deduced from the following relation:
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3. Traditional sliding mode control system using robust Differentiators

3.1. Traditional sliding mode control

The fundamental theory of SMC may be found in [13-15]. The main objective is to
design a control law to drive the system state presented in (9) to a properly designed sliding
surface.

Let define some variables as: Txxxx 321
The tracking error is the derivative speed of the motor:

txte 2                                                                                                                           (11)
The relative degree 2r , then the sliding variable can be defined as:

tetes                                                                                                                     (12)
Where  is a positive constant.
The difference between the actual and nominal function is given as follows:

nff                                                                                                                           (13)
The sliding variable derivative is:

txtxtetets 33

uIgtxxxxf gnn 3321 ,, (14)

To  ensure  that  a  sliding  mode  exists  on  a  switching  surface,  one  has  to  satisfy  the
condition given below:

0ss                                                                                                                                   (15)
The control law that satisfies (15) is given as:

ng

sksattxxnftu 3                                                                                          (16)

Where sat is the saturation function, given by:

otherwise)sgn(
if/
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s

ss
ssat                                                                                               (17)

With is  the  boundary  layer  thickness,  sgn  is  the  sign  function  and  k  is  the  positive
switching gain to compensate the uncertainties.

3.2. Robust differentiator via sliding mode

The control presented in (16) uses the full state of the system. However, only the
rotation speed variable is available for measurement. In this study we propose to use the
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robust differentiator (RDF) to estimate the full state. The differentiator considered features
simple form and easy design. It was synthesized to be employed in real-time control
systems.

Consider the successive first order differentiator with the following structure[19]:
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Here, )(),( 10 tvtv are respectively the outputs of the first and second differentiator in
equation (18).

The estimates given by the RDF can be written as:

ttxtvtx
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                                                                                              (19)

From (19) the states variables can be rewritten as:

xxxxx T
321 ˆˆˆˆ                                                                                                   (20)

Where, T
321 is the vector estimation error.

0, ii : determine the differentiation accuracy and must be chosen properly to ensure
convergence [16], [19].

The control law in (16) can be rewritten as:

ng

sksattxxnftu
ˆ3ˆˆ

                          (21)

Where:

txtxs 32 ˆˆˆ                                                                                                             (22)

A system with large uncertainties needs to use higher switching gain which can produce
higher amplitude of chattering.

In this paper a neural network sliding mode strategy is proposed, here, NN is used for
the prediction of model unknown parts in (9), and hence enable a lower switching gain to
be used.
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4. Neural network sliding mode strategy

The object of this work consists of a combination of the sliding mode strategy using the
RDF and NN named, NNSMDF. The main objective is to track the maximum power point
(MPP) for the considered photovoltaic pumping system.

In this study, we consider the NN with two layers of adjustable weights [17], [18]
(Figure 3), where x is the state input variable and the output variable is:

txy ,

Figure3. The architecture of a multilayer neural network for the prediction of uncertain
model part

)()( xWWxy T
j

T
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Where  represents the hidden-layer activation function considered as a sigmoid
function given by:

se
s

1
1)(                                                                                                                     (24)

T
NywywywyW ..21 and T

NjwjwjwjW ..21  are respectively the

interconnection weights between the hidden and the output layers.
The actual output xyd  (desired output which is the difference between the actual and

nominal functions) is:

)()()( xxyxyd                                                                                                         (25)

Where: x is the NN approximation error.
The network weights are adjusted during online implementation. The method used is

based on the gradient descent method (GD), which is a simple and fast method for online
adaptation.
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The essence of GD consists of iteratively adjusting the weights in the direction opposite
to the gradient of E, so as to reduce the discrepancy according to:

jy

jy

w
E

t
w

                                                                                                                (26)

Where 0   is the usual learning rate. And the gradient terms
jyw

E   can be derived

using the backpropagation algorithm [8]. And the cost function E is defined as the error
index and the least square error criterion is chosen as follows:

2

2
1E                                                                                                                              (27)

Let assume that the NN approximation error denoted, x   is bounded, and the

upper bound of the network error prediction denoted, * such that: *),( tx

Theorem: Consider the pumping system described by (8) in the presence of large
uncertainties. If the system control is designed as:

)ˆ()(3ˆ),(ˆ)ˆ()ˆ(1 ssatktxtxxnfxngu

With x̂  is the estimate state and k*

The trajectory tracking errors will converge to zero.

Proof:

Consider the candidate Lyapunov function: 2

2
1 sV

ssV
Replacing the expression of s given in (13) we have:

uIgtxxxxfsV gn3321 ,,
By replacing the expression of u  given in the theorem we have:

))(),(ˆ),(( sksattxtxsV

)()(),( skssatssksattxs )(* skssats

By choosing k* , with k  is a small gain which is responsible only to compensate the
network errors prediction, we have:

For any 0 , if s , )()( ssignssat , the function 0)*( skV .

     However, in a small -vicinity of the origin (boundary layer), sssat )(  is

continuous, the system trajectories are confined to a boundary layer of sliding mode
manifold 0s .

Remark: Before incorporating the neural network into the proposed control strategy, the
network was trained off-line so that to let the network learn the functional nonlinearities to



M. Ameziane et al: Neural network sliding mode control for a photovoltaic pumping system

388

a certain degree of accuracy before its implementation into the controller, and thus can give
faster online adaptation as needed.

5. Simulation results

The simulations are performed with Matlab. The considered uncertainty affecting the
solar irradiation is a random noise and the conditions specific to the simulations are

2/1000 mW and KT 15.298 .
The system is controlled by both; the traditional sliding mode controller using the RDF

and the proposed NNSMDF.
For comparison we have considered in the control law, for both NNSMDF and

traditional SMDF controllers, the same gain.
 The Figure 4 shows the state estimation errors given by the used robust differentiator.

The compared performances are shown on Figure 6 and Figure 7.The rotation speed and
power trajectory converges quickly toward the theoretical nominal value when the
NNSMDF is applied.

The PV generator is then better forced to operate at its maximum power point by using
the proposed NNSMDF controller. Figure 5 shows the adjusted duty cycles control.
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Parameters used in simulation
For the simulation we consider the parameters of the system as follows [7]:
The photovoltaic panel 55SM :

1124.0sR , 6500shR , 7404.1 , AI SCR 45.3 , 20sN , 5PN

AorI 842.4 , KAK I /10.4 4 , KrT 15.298  and kWPn 88.4 .

DC motor: .180BDMIABB

VmnV 400 , AmnI 2.12 , sradn /7.104 ,

84.9R , HL 12.0  ,  J= 0.06 Kg m2.
Chopper parameters:

mHoL 5.3
,

mFoC 7.4
. mr 600 , mRDS 85 .

Centrifugal pump parameters:
  Kr =28.10-4 w(s/rad)3, sradn /7.104 .

Conclusion

This paper proposes a sliding mode controller using neural network for pumping
photovoltaic system, the aim of the proposed NNSMDF strategy is to control the DC-DC
boost converter for maximizing the power’s PVG. So, we compare the proposed controller
with classic SMDF, both of two are motivated by using the robust differentiator RDF,
which is used to estimate the first and the second derivative of the input signal. The
simulation results prove that the proposed controller is robust and it is very well suited for
systems with large uncertainty or unknown variations in plant parameters.
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The application of the practical chosen sliding mode neural network controller motivated
by using the robust differentiator, with cheap available electronic instruments rests an
objective for generalizing and spreading the use of photovoltaic.
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