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This paper presents a novel modulated power filter compensator (MPFC) scheme for the smart
grid stabilization and efficient utilization. The MPFC is controlled by a novel tri-loop dynamic
error driven inter coupled modified VSC controller. The Matlab digital simulation models of the
proposed MPFC scheme has been fully validated for effective power quality (PQ) improvement,
voltage stabilization, power factor correction and transmission line loss reduction. The proposed
FACTS based scheme can be extended to distributed/dispersed renewable energy interface and
utilization systems and can be easily modified for other specific stabilization, compensation
requirements, voltage regulation and efficient utilization.
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1. INTRODUCTION

A power quality problem is defined as any variation in voltage, current or frequency
that may lead to an equipment failure or malfunction. In a modern electrical distribution
system, there has been a sudden increase of nonlinear loads, such as power supplies,
rectifier equipment used in telecommunication networks, domestic appliances, adjustable
speed drives, etc. These power-electronic-based loads offer highly nonlinear characteristics.
Due to their non-linearity, the loads are simultaneously the major causes and the major
victims of power quality problems [1].
Harmonics, voltage sag/swell and persistent quasi steady state harmonics and dynamic
switching excursions can result in electric equipment failure, malfunction, hot neutral,
ground potential use, fire and shock hazard in addition to poor power factor and inefficient
utilization of electric energy manifested in increase reactive power supply to the hybrid
load, poor power factor and severely distorted voltage and current waveforms. To improve
the efficiency, capacitors are employed which also leads to the improvement of power
factor of the mains [2].
Passive filters are traditionally used to absorb harmonic currents because of low cost and
simple robust structure. But they provide fixed compensation and create system resonance
[3, 4]. The filtering characteristics of passive filters are determined by the impedance ratio
of the supply and the passive filter and are often difficult to design. The shunt active filters
are used for providing  compensation of harmonics, reactive power and/or neutral current in
ac networks, regulation of terminal voltage, suppression of the voltage flicker, and to
improve voltage balance in three-phase system [5, 6]. They have the capability of damping
harmonic resonance between an existing passive filter and the supply impedance, but they
require a large current rating with high current bandwidth and do not constitute a cost-
effective harmonic filtering solution for nonlinear loads.

Hybrid filters effectively mitigate the problems of both passive filters and pure active filter
solutions and provide cost effective and practical harmonic compensation approach,
particularly for high power nonlinear loads. The combination of low cost passive filters and
control capability of small rating active filter effectively improve the compensation
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characteristics of passive filters and hence reduce the rating of the active filters, compared
to pure shunt or series active filter solutions [7- 9]. Many power filter compensation
configurations are proposed in literature to enhance power quality and to improve power
factor [10-14].

The paper validated a novel modulated power filter compensator (MPFC) scheme
to improve the power quality and utilization in smart grid application. The proposed
FACTS based system utilizes the tri-loop dynamic error-driven modified VSC controller to
control the MPFC. The proposed scheme proved success in improving the power quality,
enhancing power factor, reduce transmission losses and limit transient over voltage and
inrush current conditions.

2. Modified Power Filter Compensator (MPFC)
The low cost modulated dynamic series-shunt power filter and compensator is a switched
type filter, used to provide measured filtering in addition to reactive compensation. The
modulated power filter and compensator is controlled by the on-off timing sequence of the
pulse width modulation (PWM) switching pulses that are generated by the dynamic tri loop
error driven dynamic modified VSC controller. The modified VSC controller is equipped
with a supplementary error-sequenced compensation loop for fast effective dynamic
response in addition to conventional VSC activation.
This scheme of MPFC structure comprises a series fixed capacitor bank and two shunt
fixed capacitor banks are connected to a modulated PWM switched tuned arm filter through
six pulse uncontrolled rectifier. The matlab model of this scheme structure is shown in Fig.
1

Figure 1: Modified Power Filter Compensator structure

3. Tri Loop Error Driven Modified VSC Controller
The tri-loop error-driven dynamic controller is a novel dual action control used to modulate
the power filter compensator [15, 17]. The global error signal is an input to the modified
VSC controller to regulate the modulating control signal to the PWM switching block as
shown in Figs. 2(a) & 2(b). The modified VSC includes an error sequential activation
supplementary loop to ensure fast dynamic response and affective damping of large
excursion, in addition to conventional VSC structure.
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Figure 2(a): The modified VSC controller

Figure 2(b): Matlab functional model of the Inter-coupled tri loop error driven modified VSC controller

4. AC Study System
The sample study AC grid network is shown in Fig. 3. It comprises a synchronous
generator (driven by steam turbine) delivers the power to a local hybrid load (linear, non-
linear and induction motor load) and is connected to an infinite bus through 300 km
transmission line. The system, compensator and controller parameters are given in the
Appendix.
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Figure 3: the single line diagram of the Full study AC system

5. Digital Simulation Results
The Matlab digital simulation results using MATLAB/SIMULINK/Sim-Power Software
Environment for the proposed MPFC scheme under three different study cases are:

5.1. Case 1: Normal Loading Operation
The modulated tuned power filter switching signals that are generated by the dynamic

tri loop error driven dynamic modified VSC controller are shown in Fig. 4. The stable
voltage signal of synchronous generator power system stabilization (PSS) is depicted in
Fig. 5. The RMS of voltage and current waveforms of the MPFC are shown in Fig. 6 and
Fig. 7, respectively. The dynamic responses of voltage, current, reactive power, power
factor, and frequency spectra at generator bus (Vg), load bus (VL) and infinite bus (Vb)
under normal loading operation are shown Figs. 8 - 17. The Transmission line losses are
shown in Table 1.
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Figure 4: Sa and Sb pulsing signals
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Figure 5: PSS  stable voltage signal
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Figure 6: The voltage waveform of the MPFC
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Figure 7: The current waveforms of the MPFC
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Figure 8: The rms voltage at AC buses under normal operation
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Figure 9: The rms current at AC buses under normal operation
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Figure 10: The reactive power at AC buses under normal operation
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Figure 11: The power factor at AC buses under normal operation
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Figure 12: The rms voltage and current at infinite bus under normal operation
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Figure 13: The reactive power and power fator at the infinite bus under normal operation
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Figure 14: The frequency spectrum and THD of voltage waveforms at the load bus
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Figure 15: The frequency spectrum and THD of current waveforms at the load bus
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Figure 16: The frequency spectrum and THD of voltage waveforms at the infinite bus
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Figure 17: The frequency spectrum and THD of current waveforms at the infinite bus

The previous figures confirm the compansation effecteveness as well as the harmonic
filtering of the proposed MPFC.

5.2. Case 2: Short Circuit Fault Condition
A three phase short circuit (SC) fault is occurred at bus Vs, as shown in Fig. 3, for  a

duration of 0.1sec, from t = 0.2 sec to t= 0.3 sec. The RMS of voltage and current
waveforms at generator and load buses are depicted in Figs. 18 & 19.
As shown in Figs. 18 & 19, with using the proposed MPFC scheme, the remote short circuit
fault has not any effect on the values of  RMS voltage and RMS current  of generator and
load buses, so these schemes can be considered a good power quality mitigation method.
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Figure 18: The rms voltage at generator and load buses under SC fault condition
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Figure 19: The rms current at generator and load buses under SC fault condition
5.3. Case 3: Local Hybrid Load Excursions
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The real time dynamic responses of the system for a load excursion are obtained for the
following time sequences.

- At t = 0.1 sec, linear load is disconnected for a duration of 0.05 sec.
- At t = 0.2 sec, nonlinear load is disconected for a duration of 0.05 sec.
- At t = 0.3 sec, the induction motor torque is decreased by 50% for a duration 0.05

sec.
- At t = 0.4 sec, the induction motor torque is increased by 50% for a duration 0.05

sec.
The rms values of voltage and current waveforms at generator and load buses under load
excursions are depicted in Figs. 20 & 21. The linear and nonlinear load RMS current
waveforms are shown in Fig. 22 and the speed-torque relationship of induction motor (IM)
is shown in Fig. 23.
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Figure 20: The rms voltage waveform at generator and load buses under load excurtions

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Generator Bus

Time (sec)

RM
S C

urr
en

t (p
u)

without
with MPFC

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Load Bus

Time (sec)

RM
S C

urr
en

t (p
u)

without
with MPFC

Figure 21: The rms current waveform at generator and load buses under load excurtions
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Figure 22: The linear and nonlinear load rms current waveforms
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Figure 23: The speed-torque relationship of the induction motor

Table 1: The transmission line losses
P Loss (pu) Q loss (pu) S loss (pu)

Case 1
Without MPFC 0.073 0.1369 0.1422

With MPFC 0.001 0.007 0.0071

Case 2
Without MPFC 0.1953 0.3464 0.443

With MPFC 0.0012 0.007 0.0071

Case 3
Without MPFC 0.0739 0.1385 0.157

With MPFC 0.0009 0.007 0.0071

Comparing the dynamic response results without and with using the proposed MPFC under
three study cases; normal operation, short circuit fault conditions and hybrid load
excursions, it is quite apperent that the proposed MPFC enhanced the power quality,
improved power factor, compansated the reactive power, stabilized the buses voltage and
reduced the transmission line losses.

6. Conclusions
This paper presents a novel modulated switched power filter compensator (MPFC) scheme.
The MPFC is controlled by a dynamic tri-loop dynamic error driven modified VSC
controller. The digital simulation model of the proposed MPFC scheme has been validated
for effective power quality improvement, voltage stabilization, power factor correction and
transmission line loss reduction. The proposed FACTS based scheme can be extended to
other distributed/dispersed renewable energy interface and utilization systems and can be
easily modified for other specific compensation requirements, voltage stabilization and
efficient utilization. Topology variations and flexible dynamic control techniques can be
utilized in renewable energy smart grid interface.
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Appendix
1. Steam turbine

Pout = 600 MW, speed = 3600 rpm.
2. Synchronous generator

3 phase, 1 pair of poles, Vg = 25 kV (L-L), Sg = 600 MVA, Xd=1.79, Xd'=0.169, Xd"=0.135, Xq=1.71,
Xq'=0.228, Xq"=0.2, Xl=0.13.

3. Local Hybrid AC Load (90 MVA)
linear load: 30 MVA, 0.85  lag pf.
non-linear load: P= 20 kw, Q=22.4 MVAR.
induction motor: 3phase, 30 MVA, no of poles=4,
Stator resistance and leakage inductance (pu)
Rs =0.01965, Ls=0.0397
Rtator resistance and leakage inductance (pu)
Rr = 0.01909, Lr=0.0397
Mutual inductance Lm (pu) =1.354

4. Transmission Line
VL-L = 500 kV, 300 km length, R/km=0.01273 Ω, L/km=0.9337 mH

5. Infinte Bus: VL-L = 500 kV
6. MPFC: Cs = 30µF, Cf1 = Cf2 = 125µF, Rf = 0.25Ω and Lf = 3mH
7. Controller gains (figure 2): γvg=1, γig=0.5, γpg=0.25, γvg-rip=1, γig-rip=1, γpg-rip=0.5, B0=0.2, B1=10, B2=0.1 and

PWM frequency fs=1750 Hz


