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This paper presents a Differential Evolution (DE) approach for solving the contingency 
constrained optimal Reactive Power Planning (RPP) problem. Differential evolution is a simple 
population based algorithm with the ability in searching global optimum solution of non-linear 
and non convex optimization problems. While solving the RPP problem using Differential 
Evolution, the voltage magnitudes are taken as continuous variables, whereas the transformer 
tap setting and the reactive power generation of capacitor are taken as discrete variables. The 
proposed algorithm has been applied to find the optimal reactive power control variables in 
IEEE 30-bus system, 76 bus Indian system and IEEE 57-bus system under normal and 
contingency states. The results are promising and show the effectiveness and robustness of the 
proposed approach.   
Keywords: - Differential evolution, Reactive Power Planning, Contingency, Voltage profile 
Enhancement 

Nomenclature 
Gij, Bij Conductance and Susceptance of transmission line 
           Connected between ith and jth bus. 
Pi, Qi Real and Reactive power injection of ith bus. 
Ps Real power generation of slack bus. 
Qci Reactive power source installation at bus i. 
Qgi Reactive power generation at bus i. 
Vgi  Generator voltage magnitude at bus i. 
tk Tap setting of transformer at branch k. 
Nl Set of number of load level duration. 
NE Set of branch numbers. 
NC Set of number of possible reactive power source    
      installation buses. 
NT Number of tap-setting transformer branches. 
NPV Number of voltage buses. 
NB Total number of buses. 
NPQ Number of load buses. 
NB-1 Total number of buses excluding slack bus. 
h          Per unit energy cost. 
dl              Duration of load level (h). 
gk              Conductance of branch k. 
Vi             Voltage magnitude at bus i. 
ei          Fixed reactive power source installation cost at bus i. 
Cci        Per unit reactive power source purchase cost at bus i. 
 
2. Introduction 
       Reactive Power Planning in power systems is a very important issue in the expansion 
planning and operation of power systems because it leads to increased transmission 
capability, reduced losses and improved power factor using shunt capacitors that have been 
very commonly installed in transmission networks. By applying capacitors adjacent to 
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loads, several advantages are obtained. Some of them are improved power factor, reduced 
transmission losses, increased transmission capability, improved voltage control and 
improved power quality. 
      The goal of reactive power planning is to determine the location and amount of shunt 
reactive power compensation devices to be installed in the system to maintain satisfactory 
voltage profile during normal and anticipated contingency conditions at minimum cost. It is 
one of the most complex problems in power systems, as it requires the simultaneous 
minimization of two objectives. The first objective deals with minimization of real power 
losses in reducing the operation cost and improving the voltage profile. The second 
objective minimizes the allocation cost of additional reactive power sources. 
 
      The application of optimization techniques to power system planning and operation has 
been an active research area in the recent past. Mathematical programming techniques such 
as gradient method [1], Newton method [2], quadratic programming [3], linear 
programming [4-7], mixed integer programming [8], decomposition method [9-12] and 
interior point method [13] have been applied to solve the reactive power optimization 
problems. Most of these conventional optimization methods use the first and second 
derivatives of the objective functions and its constraint equations as the search directions. 
The conventional optimization methods can only lead to local minimum and sometimes 
result in divergence in solving RPP problems. Further, the conventional methods cannot 
deal with the non-differentiable factor in the reactive power sources installation function in 
RPP. 
 
      Global optimization techniques such as Genetic algorithm (GA) [13,14] Tabu search 
[15] Evolutionary programming [16] Evolutionary strategy [17] and simulated annealing 
[18] have been recently applied to reactive power optimization leading to improved 
solutions. Iba [13] proposed a GA-based method to the reactive power allocation planning 
which utilizes unique intentional operations. The first is “interbreeding” which is a kind of 
crossover using decomposed subsystem. This idea is similar to agricultural plant breeding, 
since it assembles a whole system using good parts with various features. The second is 
“gene recombination” or “manipulation”.Urdaneta et.al [14] proposed a modified GA at an 
upper stage and successive linear programming at a lower stage for the solution of reactive 
power planning problem. The genetic algorithm is devoted to find the location of new 
reactive power sources and the magnitude of reactive power sources to be installed at the 
previously determined locations was calculated by means of linear program iterated 
successively with a fast decoupled load flow algorithm.Gan et.al [15] proposed a tabu 
search method for solving large scale var optimization and planning problem. Simulation 
result of real world power system problem is presented in this paper. A comparison 
between the tabu search and simulated annealing method in solving the RPP problem is 
also given. Lai et.al [16] proposed an evolutionary programming approach to solve the 
reactive power planning problem and compared with non linear programming approach for 
the IEEE 30-bus system and a practical system. Kwang et.al [17] proposed a comparative 
study of three evolutionary algorithms namely evolutionary programming, evolutionary 
strategy and genetic algorithm in solving the RPP problem. In this paper the reactive power 
planning problem is decomposed into P- and Q – optimization modules and each module is 
optimized by the three evolutionary algorithms in an iterative manner to obtain the global 
solution. Jwo et.al [18] proposed a hybrid expert system and simulated annealing method to 
solve the reactive power planning problem. In this paper expert system consisting of several 
heuristic rules was used to find a local optimum solution, which will be employed as an 
initial starting point of the second stage. It can deal with a mixture of continuous and 
discrete variables. Devaraj et.al [19] proposed an improved genetic algorithm approach for 
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solving the multiobjective reactive power dispatch problem. Minimization of real power 
loss and total voltage deviation were the objectives of this reactive power optimization 
problem. In this approach, modifications were proposed to take into account the discrete 
nature of the transformer tap setting and capacitor bank. For effective genetic operation, the 
crossover and mutation operators which can directly deal with the floating point numbers 
and integers are used. Hamouz et.al [20] proposed a particle swarm optimization algorithm 
for optimal reactive power planning. In this paper, the problem was decomposed into real 
power and reactive power optimization sub problems. The real power optimization 
minimizes the operation cost by adjusting the real power generation, while reactive power 
optimization minimizes the operation cost and investments on VARS by adjusting the 
reactive power generation, transformer tap setting and capacitor setting. This paper is 
concerned with the application of Differential Evolution (DE) for reactive power planning 
in power systems including line flow and voltage profile improvement in power systems. 
 
      Differential evolution (DE) [21, 22] is one of the recently developed evolutionary 
computation technique. Differential evolution improves a population of candidate solutions 
over several generations using the mutation, crossover and selection operators in order to 
reach an optimal solution. Differential evolution presents good convergence characteristics 
and requires few control parameters, which remain fixed throughout the optimization 
process and need minimum tuning.  The DE technique can generate high quality solutions 
within shorter computation time and possess stable convergence characteristics than other 
stochastic methods. In this work, the DE algorithm is extended to handle mixed variables, 
such as transformer taps and reactive power sources. The performance of DE in solving the 
RPP problem is evaluated on IEEE 30, IEEE 57 bus test system and a practical 76 bus 
Indian system. Simulation results demonstrate that the proposed approach is superior to the 
existing methods for solving the reactive power planning problem. 
 
3. Problem Formulation 
  
      The reactive power planning is concerned with determining the “optimal” reactive 
power control variables which results in minimum real power loss and reactive power 
source allocation cost while maximizing the voltage profile. The cost minimization 
comprises of two terms. The first term represents the total cost of energy loss given by 
 
                                                                                                            (1) 
 
Where Ploss  is the network real power loss during the period of load level l. 
 
      The second term represents the cost of reactive power source installation which has two 
components, the fixed installation cost and the purchase cost given by the equation 
 

   (2) 
  
Here Qci can be either positive or negative corresponding to the installation of capacitance 
or reactance and so the absolute value is used to compute the cost. 
 
      The above two terms are put into one equation which can be easily adjusted by 
changing the parameters in Wc and Ic.  
 
Minimize   F =Wc + Ic           (3)  
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Subject to: 
 
(i) Real power balance Equation: 
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 (ii) Reactive power balance Equation: 
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(iii) Slack bus real power generation limit: 

maxmin
SSS PPP ≤≤          (6)         

 (iv) Generator reactive power generation limit: 
maxmin
gigigi QQQ ≤≤

                                              PVNi∈      (7)  
 (v) Bus voltage limit: 

maxmin
iii VVV ≤≤                                                BNi∈    (8) 

(vi) Capacitor reactive power generation limit: 
maxmin
cicici QQQ ≤≤                                              cNi∈     (9)      

(vii) Transformer tap setting limit: 
maxmin
kkk ttt ≤≤                                                      TNi∈   (10) 

(viii) Line flow limit: 

  
max
ll SS ≤                                                              lNl ∈    (11)   

      From the mathematical formulation of the RPP problem it is found that it is a non-linear 
combinatorial optimization problem. Conventional optimization techniques are not efficient 
in solving this complex optimization problem. In this work, DE is applied to solve the RPP 
problem. Section 4 presents the details of the DE-based approach for solving this complex 
optimization problem. 
 
4. Review of Differential Evolution Algorithm 
 
       Differential Evolution is an evolutionary computation algorithm developed by Storn 
and Price in 1995 [20]-[22] which solves real valued problems based on the principles of 
natural evolution. It is a heuristic optimization method which can be used to optimize 
nonlinear and non-differentiable continuous space functions. It has been extended to handle 
mixed integer discrete continuous optimization problem also. DE uses a population P of 
size NP that evolves over G generations to reach the optimal solution. Each individual Xi is 
a vector that contains as many parameters as the problem decision variables D.  

[ ])()(
1

)( ,......., G
N

GG
P

XXP =
      (12) 

[ ] P
TG

iD
G
i

G
i NiXXX ,.....,1,,......., )(

,
)(

.1
)( ==

      (13) 



P.Rajkumar & D.Devaraj: CCRPP by Differential Evolution Approach 

 

 169 

      The population size NP is an algorithm control parameter selected by the user which 
remains constant throughout the optimization process. The optimization process in 
Differential Evolution is carried out using the three basic operations: Mutation, Crossover 
and Selection. The algorithm starts by creating an initial population of NP vectors. Random 
values are assigned to each decision parameter in every vector as follows. 

( )minmaxmin)0(
, jjjjij XXXX −+= η

       (14) 
Where PNi ,.....,1=  and Dj ,.....,1= ; min

jX  and max
jX  are the lower and upper 

bounds of the jth decision parameter; and jη is a uniformly distributed random number 

within [0, 1] generated for each value of j. )0(
,ij

X  is the jth parameter of the ith individual of 

the initial population. The main steps of the DE algorithms are given below: 
 

Initialization 
  Evaluation 
  Repeat 
   Mutation 
   Crossover  
   Evaluation  
   Selection 
  Until (termination criteria are met) 
 
Mutation  

      The mutation operator creates mutant vectors ( )'iX
 by perturbing a randomly selected 

vector Xa   with the difference of two other randomly selected vectors Xb and Xc  
    ( )'( ) ( )( ) ( )G GG G

i a b cX X F X X= + −     PNi ,......,1=                                   (15) 

 Where Xa  Xb and  Xc  are randomly chosen vectors among the Np population, and 
icba ≠≠≠ . The scaling constant F is an algorithm control parameter used to adjust the 

perturbation size in the mutation operator and to improve algorithm convergence. 
 
Crossover 

      The crossover operation generates trail vectors ( )"
iX  by mixing the parameters of the 

mutant vectors ( )'iX  with the target vector ( )iX  according to a selected probability 
distribution, 
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       Where  PNi ,.....,1=  and Dj ,.....,1= ; q is a randomly chosen index { }PN,.....,1∈  

that guarantees that the trail vector gets at least one parameter from the mutant vector; '
jη  is 

a uniformly distributed random number within [0, 1] generated for each value of j.The 
crossover constant CR is an algorithm parameter that controls the diversity of the population 
and aids the algorithm to escape from local minima. )('
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parameter of the ith target vector, mutant vector and trail vector at generation G, 
respectively. 
 
Selection 
 
      The selection operation forms the population by choosing between the trail vectors and 
their predecessors (target vectors) those individuals that present a better fitness or are more 
optimal according to (17). 
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      This process is repeated for several generations allowing individuals to improve their 
fitness as they explore the solution space in search of optimal values. 
 
       DE has three essential control parameters: the scaling factor (F), the crossover constant 
(CR) and the population size (NP). The scaling factor is a value in the range [0, 2] that 
controls the amount of perturbation in the mutation process. The crossover constant is a 
value in the range [0,1] that controls the diversity of the population. The population size 
determines the number of individuals in the population and provides the algorithm enough 
diversity to search the solution space. 
 
Control parameter selection 
 
       Proper selection of control parameters is very important for algorithm success and 
performance. The optimal control parameters are problem specific. Therefore, the set of 
control parameters that best fit each problem have to be chosen carefully. The most 
common method used to select the control parameter is parameter tuning. Parameter tuning 
adjusts the control parameters through testing until the best settings are determined. 
Typically the following ranges are good initial estimates: [23]: F= [0.5, 0.6], CR= [0.75, 
0.90] and NP= [3D, 8D]. 
 
       In order to avoid premature convergence, F or NP should be increased, or CR should be 
decreased. Larger values of F result in larger perturbation and better probabilities to escape 
from local optima, while lower CR preserves more diversity in the population thus avoiding 
local optima. 
 
5. DE Implementation for RPP 
      While applying DE to solve the reactive power planning problem, the following issues 
need to be addressed. 
 
1. Representation of the problem variables and 
2. Formation of the evaluation function. 
 
These two issues are described in this section. 
  
A. Problem Representation 
 

Each vector in the DE population represents a candidate solution of the given problem. 
The elements of that solution consist of all the optimization variables of the problem. For 
the reactive power planning problem under consideration, generator terminal voltages ( giV ), 
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the transformer tap positions (tk) and the Capacitor settings (QCi) are the optimization 
variables. Generator bus voltage is represented as floating point numbers, whereas the 
transformer tap position and reactive power generation of capacitor are represented as 
integers.  
 
B. Evaluation Function 
 
       Differential evolution searches for the optimal solution by maximizing a given fitness 
function, and therefore an evaluation function which provides a measure of the quality of 
the problem solution must be provided. In the reactive power optimization problem under 
consideration, the objective is to minimize the total cost while satisfying the constraints (4-
11). The equality constraints are satisfied by running the Newton Raphson power flow 
algorithm. The inequality constraints on the control variables are taken into account in the 
problem representation itself, and the constraints on the state variables are taken into 
consideration by adding a quadratic penalty function to the objective function. With the 
inclusion of penalty function the new objective function becomes, 
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       Here, SP,VPj ,QPj and LPj are the penalty terms for the reference bus generator active 
power limit violation, load bus voltage limit violation; reactive power generation limit 
violation and line flow limit violation respectively. These quantities are defined by the 
following equations: 
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      Where, Ks, Kv, Kq and Kl are the penalty factors. Since DE maximizes the fitness 
function, the minimization objective function f is transformed to a fitness function to be 
maximized as, 
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                               Fitness = 
f
k

           (23)  

 Where k is a large constant. 
 
6. Results and Discussion 
 
       The proposed DE-based approach for solving the reactive power planning was applied 
to IEEE 30-bus, IEEE 57-bus test system and practical 76-bus Indian system. The generator 
active power generation was kept fixed except for the slack bus. The base power and 
parameters of costs are given in Table 1. The program was written in MATLAB and 
executed on a PC with 2.4 GHZ Intel Pentium IV processor. The results of the simulation 
are presented below.  
 
Case 1: Reactive Power Planning in IEEE 30-bus system: 
 
      The proposed DE based approach for solving Reactive Power Planning problem was 
applied to IEEE 30-bus test system which is shown in figure 1. The IEEE 30 bus system 
has 6 generators, 24 load buses, 41 transmission lines, 4 transformer taps and 2 shunt 
elements.  The transmission line parameters and the system base load are taken from [24]. 
The variable limits are given in Table 2.  The real power settings of the generator are taken 
from [24]. The possible locations for capacitor installation are buses 10, 
12,15,17,20,21,23,24 and 29. The proposed algorithm was run with minimization of total 
cost as the objective function. The total cost consisting of fixed installation cost, purchase 
cost and operating cost are calculated and minimized in the base case. The DE based 
algorithm was tested with different parameter settings and best results are obtained with the 
following setting: 
 
                                                  No. of Generations :    20 
                        Population Size : 100   
                        F   : 0.5 
                                                  CR   : 0.9 
       The DE algorithm reaches a minimum cost of 2,591,830$ in this case. The algorithm 
took 50 sec to reach the optimal solution. The optimal values of control variables are given 
in the second column of Table 3. Corresponding to these control variables, it was found that 
there was no limit violation. The minimum cost obtained by the proposed algorithm is 
compared with evolutionary programming [16] approach and the results are presented in 
Table 4. The minimum costs obtained in this method is less then the value reported in [16].  
This shows the effectiveness of the proposed approach in solving the RPP problem. 
 

Table 3: Optimal values of Control Variables of Case 1 
 

Control Variables Control Variables   
Setting 

V1 
V2 
V5 
V8 
V11 
V13 
t 6-9 

1.09 
1.08 
1.05 
1.06 
1.04 
1.05 
1.05 
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t 6-10 
t 4-12 
t 28-27 
C10 
C12 
C15 
C17 
C20 
C21 
C23 
C24 
C29 

0.95 
1.025 
1.00 
1 
5 
3 
5 
5 
4 
5 
5 
1 

Ploss (MW) 
Cost 
Vmin 

4.72 
2,591,830 
1.07 

 
     Table 4: Comparison of results of total cost 
 

Case 1               
Method Total Cost($) Ploss(MW) 

EP[16] 2,608,500 4.963 
PROPOSED 
METHOD 

2,591,830 4.72 

 
Fig.1. IEEE-30 bus test system 

 
Case 2: Contingency Constrained Reactive Power Planning for IEEE 57-bus system: 
 
      The IEEE 57 bus system has 7 generators, 50 load buses, 80 transmission lines and 17 
transformer taps. Two different cases are considered in this system. In case 1, the proposed 
DE algorithm is applied to minimize the total cost in base case without including the 
contingency constraint. In case 2, the algorithm is applied to minimize the total cost in base 
case after including contingency constraint. The possible locations of capacitor installation 
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are buses 25, 30,32,34,35 and 53 to supply reactive power. The variable limits are given in 
Table 5. The DE based algorithm was tested with different parameter settings and best 
results are obtained with following setting: 
 
                                              No. of Generations : 20 
                                              Population Size              : 100   
                                              F   : 0.5 
                                              CR                   : 0.9 
 
 

Table 6: Optimal values of Control variables of Case 2 
 
 
 

 

 
 
                                                        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

        The optimal values of the control variables, loss, cost, and minimum voltage for case1 
are given in second column of Table 6. The minimum cost obtained by this algorithm is 
compared with genetic algorithm approach [25] and the results are presented in Table 7. 
The cost obtained by this method is less than the value reported in [25]. Next, the single 
line contingency analysis is performed in IEEE 57- bus system. From the contingency 
analysis, the line outage 25-30 is identified as the severe contingency with a minimum 

      Control Variables Setting  
 
Control Variable Case 1 Case 2 
V1 
V2 
V3 
V6 
V8 
V9 
V12 
t 4-18 
t 4-18 
t 21-20 
t 24-25 
t 24-25 
t 24-26 
t 7-29 
t 34-32 
t 11-41 
t 15-45 
t 14-46 
t 10-51 
t 13-49 
t 11-43 
t 40-56 
t 39-57 
t 9-55 
C25 
C30 
C34 
C32 
C35 
C53 

1.08 
1.1 
1.08 
1.06 
1.05 
1.05 
1.05 
1.025 
1.0 
1.025 
1.1 
1.1 
1.0 
1.0 
0.925 
1.0 
1.025 
1.025 
0.925 
0.95 
1.025 
1.025 
1.0 
1.0 
5 
2 
5 
5 
3 
5 

1.07 
1.06 
1.06 
1.07 
1.07 
1.08 
1.07 
1.075 
1.0 
1.025 
1.025 
1.025 
1.025 
0.95 
0.975 
1.05 
1.0 
0.95 
1.025 
0.975 
1.0 
1.05 
1.1 
1.05 
3 
3 
3 
5 
5 
4 

Loss ( M W) 
Cost ($) 
Vmin 
Time 

25.12 
13,284,070 
0.99 
52 sec 

25.83 
13,651,240 
0.98 
53 sec 
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voltage of 0.60. The voltage limit violated buses in contingency state are 
23,24,25,26,27,28,29 and 33. The voltage violation occurred during this contingency is 
added as an additional constraint in case 2. The optimal values of the control variables, loss, 
cost, time and minimum voltage in this case are given in third column of Table 6. From 
table 6, it is found that the real power loss and total cost were increased after including the 
contingency constraint in base case, but the voltage violations which were present earlier 
have been completely alleviated. The voltage magnitudes of the above buses before 
optimization and after optimization are displayed in figure 2. From this figure, it was 
inferred that the voltage magnitudes of the severe buses were improved after the 
optimization. Also, it was inferred that the minimum voltage is raised from 0.60 to 0.98 
after the application of the proposed DE algorithm. Further, before the application of the 
algorithm voltage violation violations were present in the buses. But, they are corrected 
after the optimization. Table 8 gives the voltage magnitude for a selected list of buses for 
contingency 25-30. Improvement in voltage profile at the load buses is evident from the 
results. The algorithm took 52 sec to reach the optimal solution. This shows the 
effectiveness of the proposed algorithm in solving the contingency constrained reactive 
power planning problem. 
 

 
Table 7: Comparison of cost in base case for IEEE 57-bus system 

 

Method Total cost ($) Ploss in MW 
GA [25] 
Proposed Method 

14,561,000 
13,284,070 

25.9654 
25.12                                         

Table 8: Improvement of voltage profile for IEEE 57 bus system 
 

Voltage Magnitude S.No Bus No 
Before Optimization After Optimization 

1. 23 0.60 0.98 
2. 24 0.62 1.00 
3. 25 0.75 1.02 
4. 26 0.76 1.01 
5. 27 0.90 1.00 
6. 28 0.92 0.99 
7. 29 0.94 1.02 
8. 33 0.91 1.01 

 
Figure 2: Voltage magnitudes of severe buses in contingency condition 
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Case 3: Reactive Power Planning of Practical 76-Bus Indian System: 
 

        The proposed DE approach was applied to solve the RPP problem in a practical Indian 
power system. The system under consideration is a regional grid of Indian power system , 
consisting of 13 generator buses, 63 load buses, 116 transmission lines , 18 tap changing 
transformers and switchable  var compensators are located at 12 places. The total load on 
the system is 3668 MW and 2591 MVAR. The variable limits are given in Table 9. To 
obtain the optimal values of control variables the DE based algorithm was run with 
different parameter settings. 
 
                                  The best parameter settings are:  
                                   No of generation              :             20 
                                   Population size                 :             100 
                                   F                                       :             0.2 
                                  CR                                     :             0.9 
 

         The algorithm reaches a minimum cost of 26,553,160 $. The algorithm took 55 sec to 
reach the optimal solution. The optimal control variable settings obtained in this case are 
given in Table 10.  The loss obtained in this case is 50.28 MW which is less than the loss 
obtained by conventional linear programming method [26]. From the comparison, it is 
found that the proposed method is more effective in solving the RPP problem than the other 
methods.                                                                                        

Table 10: Optimal control variables for practical 76 bus Indian system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
7. Conclusion         
       This paper has presented a differential evolution approach for solving the reactive 
power planning problem. The algorithm minimizes the operation cost and allocation cost of 
reactive power sources and voltage profile enhancement by adjusting the control variables 
such as generator voltage magnitude, setting of tap changing transformer and Capacitor 
setting. The proposed method formulates the reactive power problem as a mixed integer 
non-linear optimization problem and determines the control strategy with continuous and 
discrete control variables such as generator bus voltage, reactive power generation of 

Vvar Tvar Cvar 
0.99 
1.02 
1.03 
1.05 
1.00 
1.05 
1.06 
1.01 
0.98 
1.02 
1.01 
1.05 
1.04 

0.975 
1.00 
1.025 
1.025 
1.00 
1.025 
0.975 
0.975 
1.00 
0.975 
1.025 
1.10 
1.00 
0.975 
1.00 
0.925 
0.975 
1.05 

3 
5 
3 
3 
3 
5 
3 
3 
3 
3 
2 
2 
 

Cost = 26,553,160 $ 
TL = 50.28 MW 
Vmin =0.95 
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capacitor banks and on load tap changing transformer tap position. To handle the mixed 
variables flexible representation scheme was proposed. Simulation results on IEEE 30-bus 
test system, IEEE 57-bus system and practical 76-bus Indian system demonstrate the 
effectiveness of the proposed approach in minimizing the cost and maximizing the voltage 
profile of the systems in base case and contingency conditions.  
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Appendix 
Table 1: Base Power and parameter of costs 

 
SB H ei Cci dl 

 
(MUA) ($/p.u.wh) ($) ($./p.u.VAR) Case1 Case 2 Case 3 
100 6000 1000 3000,000 8760 8760 8760 

 
Table 2: Variable limits (p.u) of IEEE 30-bus test system 

 
Bus 1 2 5 8 11 13 
Qg max 1.5 0.6 0.48734 0.6245 0.4 0.45 
Qg 

min -0.2 -0.2 -0.15 -0.15 -0.1 -0.15 
 

V max V min T max T min Qc
 max Qc

 min 
1.35 0.95 1.1 0.9 5.0 0.0 

                                                 
Table 5: Variable limits (p.u) of IEEE 57-bus test system 

 
Bus 1 2 3 6 8 9 12 
Qg max 2.0 0.50 0.60 0.25 2.0 0.9 1.55 
Qg 

min -1.4 -0.17 -0.1 -0.08 -1.4 -0.03 -1.5 
  
 
 
 
 
 
 

Table 9: Variable limits (p.u) of Practical 76-bus Indian system 
Bus 1 2 3 4 5 6 7 8 9 10 11 12 13 
Qg 
max 

1.0 2.0 1.0 3.0 4.0 2.2 2.2 2.2 0.8 0.35 0.4 1.0 1.5 

Qg 
min 

-0.6 -1.0 -0.5 -1.5 -2.0 -1.0 -1.0 -1.0 -0.4 -0.2 -0.5 -1.5 -1.0 

 
 
 

V max V min T max T min Qc
max Qc

min 
1.35 0.95 1.1 0.9 5.0 0.0 

V max V min T max T min Qc
max Qc

min 
1.35 0.95 1.1 0.9 5.0 0.0 


