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Nonlinear Phenomena Control in DC-
DC Converters Using Dynamical Ramp  

DC-DC power converters are characterized by cyclic switching of circuit configurations, which 
gives rise to a variety of nonlinear behaviors. Their occurrence in DC-DC power converters 
makes the system analysis, control and behavior prediction difficult. An enhanced modeling 
method allowing obtaining an accurate description of the converter behavior is presented in this 
paper. The principal of ramp compensation is introduced and dynamical compensation ramp is 
proposed to both suppress converter nonlinear phenomena and ensure the peak current 
regulation for a wide range of reference variation.  

Keywords: boost converter, accurate model, compensation ramp, static slop, dynamical slop, 
nonlinear phenomena, bifurcation. 

1. Introduction 

DC-DC converters are electronic circuits allowing the electric energy conversion from 
one form to another by the commutation between a finite number of configurations. These 
systems can be considered as an indexed collection of continuous dynamical systems along 
with a mechanism for jumping or switching between them. Indeed, the system is 
characterized by continuous dynamics for each topology and discrete events corresponding 
to the switching conditions. 
 For the DC-DC converters there are two conduction modes; the discontinuous conduction 
mode (DCM) and the continuous one (CCM). In the DCM three topologies can be 
distinguished and two configurations in the CCM. 
 Generally, the DCM is used in the power factor correction (PFC) schemes due to the fact 
that can help to obtain a maximum of energy conversion. Whereas, in regulation schemes 
the CCM is preferred. Furthermore, the system analysis is easier in CCM than in DCM and 
the converter presents some features that do not appear in DCM as the right half plan zero 
in the output voltage to control transfer function [1]. 

DC-DC converters can be current-controlled (indirect control) or voltage-controlled 
(direct control). Based on linear control theory, classical controllers are predominantly used 
in industry due to their easy implementation, low cost and ability to achieve design 
objectives under some input specifications. However, the main drawback of such 
controllers is their inability to deal with nonlinear phenomena occurring under circuit 
parameters variation. Among many approaches used to handle this problem, Ott-Grebogi-
Yorke method [2] stabilizes the chaotic system orbit through a small perturbation of a so-
called control parameter. Pyragas method [3, 4] based on the use of delayed feedback 
control can also be used. Other approaches can be found in [5]. Most of these approaches 
stabilize the system orbit only for a given operating point and the control law depends on it. 
Thus, perturbations can drive the system away from the operating point and the controller 
falls to stabilize the system in its new orbit. Furthermore, they focus essentially on the 
system orbit stabilization and ignore other control performance aspects. To ensure the 
instability control and attain the desired reference, the use of compensation ramp is a 
standard practice [6-8]. Nevertheless, the control performance and the length of the stability 
range depend on the chosen slope of the ramp. 
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In this paper we use a boost converter as example and we choose the CCM as 
functioning mode. This converter will be controlled in current mode due to the fact that the 
converter is worthy in nonlinear phenomena in this mode. We propose in this paper a new 
and enhanced version of the compensation ramp technique to eliminate the drawbacks of 
the classical approach. An enhanced model of the converter is given in section II, whereas 
section III, is devoted to the presentation of the classical approach and the enhancements 
introduced to this last. In section IV, simulation results are presented to validate the 
proposed approach and to show its efficiency in term of current regulation, period-one 
region widening and nonlinear phenomena suppressing in the case of reference variation.  

 

2. Converter Model 

    In this section, we present briefly an enhanced model used to describe the boost 
converter (Fig. 1) behavior accurately, with Lr , SWr , VDr  and Cr  denote the resistors of 
inductor L , switch sw , diode VD  and capacitor C , respectively. R  is the load, gV  the 

supply voltage, ou  the output voltage and Li  the input current. 
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Fig. 1: Boost converter under current mode  

 
In C.C.M. i.e., ( ) 0Li t > , we have two configurations (Fig. 2) related to the switch sw  

position. In each one, the system can be described by a set of continuous differential 
equations. The transition from the first configuration to the second is conditioned by the 
reference reaching. A clock pulse is required to return to the first configuration (Fig. 1).   
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Fig. 2: Converter configurations in CCM 
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In the first configuration the switch sw  is closed and the current Li  increases 

continuously until it reaches a reference current refI . At this point, the controller will open 
the switch sw , enabling the inductor discharging and the capacitor charging until the next 
clock pulse. 

If we assume that, the dwell time in the first configuration is 1t dT= , in the second 

configuration is '
2 (1 )t d T d T= = − , the duty cycle is 1d t T=  and T the clock cycle, the 

enhanced discrete model, proposed in [9], expresses the system state [ ]t
c Lx v i=  ( cv : 

voltage across capacitor, Li : inductor current) at the (n+1)th clock cycle by: 
( )

2 2 1 1 2 2 1 1

( 1)

2 2( )

(( 1) ) ( ) ( ) ( ) ( ) (( ) )

(( 1) )

n d T

gnT

n T

gn d T

x n T t t x nT t n d T B V d

n T B V d

τ τ

τ τ

+

+

+

+ = Φ Φ +Φ Φ + −

+ Φ + −

∫
∫

 
(1) 
 

where  

1

1 0
( ) ,

0 L SW

C R rcA
r r

L

⎡ ⎤−⎢ ⎥+⎢ ⎥=
⎢ ⎥+

−⎢ ⎥⎣ ⎦

2

1
( ) ( )

,

( )

C C

C
L VD

C

C

R
C R r C R r

A Rrr r
R R r

L R r L

⎡ ⎤−⎢ ⎥+ +⎢ ⎥
⎢ ⎥=

+ +⎢ ⎥+⎢ ⎥− −
⎢ ⎥+⎣ ⎦

1, 2
10

t

B
L

⎡ ⎤= ⎢ ⎥⎣ ⎦
  

are the state matrices and 1,2( ) mA
m m e αα =Φ =  the transition matrix in the configuration m. 

The exactitude of model (1) is mainly related to the computing method of the transition 
matrix ( )m tΦ  and its integral term ( )b

m fa
t dτ τΦ −∫ . Based on Cayley-Hamilton theorem, 

exacts values of these two terms are given by the two flowcharts of figures 3 and 4 
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Fig. 3: Transition matrix flowchart 
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Fig. 4: Transition matrix integral flowchart 
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where ,R Iλ λ designate respectively the real part and the imaginary one of the eigenvalue 
 

In the next section, the classical method of ramp compensation is introduced at first; 
then the proposed enhancement to deal with nonlinear phenomena exhibited by the 
converter under current mode control is presented. The enhanced approach will be used 
with the presented model in order to ensure the current peak regulation and to eliminate the 
converter abnormal behaviors in a wide range of reference variation.  
 
3. Enhancement of the Classical Approach  

It’s well known that the boost converter is unstable under current mode control for duty 
cycle values higher than 0.5 [1]. So, a standard practice to prevent this instability is the 
current programming or the use of the so-called compensation ramp [1, 6-8].  
The circuit diagram of figure 5 gives the principal of this concept. In addition to the boost 
converter, the circuit contains: 

 an outer loop (voltage loop) allowing obtaining a reference signal (voltage) 
corresponding to the reference current. 

 a compensation bloc to modify the value obtained from the voltage loop in order to 
prevent the instability by adding a compensation ramp with slop cS  to the reference 
signal.  

 an inner loop that close and open the switch sw  by comparing the inductance current 
to the compensation bloc output signal. 
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Fig. 5: Current mode with compensation 

 
The use of compensation ramp leads in steady state to the system typical response ( Li ) 

given by figure 6. To asses about stability, the duty cycle is chosen higher than 0.5 
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( 0.5D > ), the solid line refers to the case of unperturbed system whereas; the dashed line 
represents the case of perturbed system. 
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Fig. 6: Typical response using compensation ramp 

 
By examination of the waveform related to the perturbed system we can remark (Fig. 6) 

that the compensation ramp damps the perturbation propagation. This indicates that the 
inductor current deviation at each clock period from the reference refI is given as: 

( ) 1 1( ) ( )L Ci n S S t nΔ = +  (2) 

( ) 2 2 11 ( ) ( )L Ci n S t n S t nΔ + = +  (3) 
where 1( )t n , 2 ( )t n are the dwell times in the first and second configuration respectively 
during the thn clock period and they are given by: 1( ) ( )t n D n T=  and 2 ( ) (1 ( ))t n D n T= − . 

We can combine (2) and (3) to obtain the following recurrent description of the system: 

( ) ( )2
2

1

1 C
L L

C

S Si n i n S T
S S

−
Δ + = Δ +

+
 (4) 

Hence, in order to damp the perturbation, the choice of the slop of the compensation 
ramp must verify: 

2

1

1C

C

S S
S S
−

<
+

 (5) 

From this inequality we can obtain the stability condition in absence of ramp 
compensation ( 0CS = ) which is: 0.5D < . In the opposite case ( 0CS ≠ ) the ramp slop must 
satisfy (5) which mean: 

 1
1 1

2(1 )CS S
D

⎛ ⎞
> −⎜ ⎟−⎝ ⎠

 or 2
11

2CS S
D

⎛ ⎞> −⎜ ⎟
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(6) 

 
Generally, the outer-loop output signal (Fig. 5) is considered as constant compared to the 

fast dynamics of the inner-loop. So, we can consider the inner-loop only to asses about the 
converter fast scale instabilities. Furthermore, if the converter operates away from the point 

1D ≈ , where the imperfection effect is important, the internal resistors of elements 
( L C VD SWr ,r ,r ,r ) can be neglected and the control law is given by: 

1

( )
( )

( )
ref L

C

I i n
d n

T S S
−

=
+

  
 

(7) 

Using the control law (7) with the choice of CS  according to (6) allows damping the 
perturbation propagation and obtaining a stable behavior of the converter as shown in figure 
6. However, this technique has some drawbacks. Indeed, expression (6) gives a semi-open 
interval for the slop; choice may be by a trial and error procedure or by the use of an 
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optimization algorithm to obtain an optimal value for the slop. Moreover, the static slop 
needs to be updated or changed every time there was deviation from or variation of the 
operating point to keep the desired performance. For these reasons, we propose the use of 
dynamical slop. A candidate law to update the slop is simple law of the form PI. Hence, the 
slop can be defined by: 

1CS Sα=   (8) 
with α  a factor calculated by the PI law for the nth clock cycle as follows:  

1

0

( ) ( ) ( )
n

p I
i

n K e n K e iα
−

=

= + ∑  
(9) 

where ( ) ( ) ( 1)L Le n i n i n= − − , pK  and IK  are respectively the proportional and integral gains 
that can obtained by classical approaches like Zigler-Nichols method. 

In the next section we evaluate the proposed approach efficiency and we asses about the 
obtained performances. 
 
4. Simulation Results  

To illustrate the improvement of the system behavior using the proposed dynamical 
ramp, let us consider the Boost converter with: 5VgV = , L 1.5 mH= , R 40Ω= , 

20C Fμ=  and the switching frequency swf 1 / T 10KHz= = .  
Imperfection of the converter elements is neglected ( L C VD SWr r r r 0= = = = ). The 

converter elements values are chosen to satisfy the condition: 2 / 4 / 27L RT >  that ensures 
the converter functioning in CCM.  

Using the model developed in paragraph 2, the converter original behavior can be 
explored under the classical feedback of figure 1 ( 0CS = ) to reach a reference current Iref. 
The obtained bifurcation diagram is given in figure 7. 
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Fig. 7: Original behavior of the converter 1T-2T-Chaos via quasi 4T 

 

0 2 4 6 8 10 12

x 10
4

0

10

20

30

40

50

60

70

Frequency [Hz]  
Fig. 8: Fourier spectrum for Iref=0.68A 
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The obtained results (Fig. 7) shows that the converter exhibit period 1 behavior (1T) 
followed by period 2 and chaos via quasi-period 4. We note that the observed quasi 
periodicity is identified by means of Fourier spectrum analysis. Indeed, for a reference 
current equal to 0.68A, the Fourier spectrum is shown in figure 8, where we can note that 
the frequency ratio is irrational and equal to 1.9413, confirming the existence of quasi 
periodicity oscillations in the system response. 

Now we present a comparison study between the static ramp and dynamical ramp in 
terms of system performance. Table 1 summarizes the obtained results in this comparative 
study. From this table, we can remark clearly that the dynamical ramp enhances the system 
dynamics and allows obtaining a current error 7 times less than the one ensured by the 
static ramp.  

 
Tab. 1: Performance under static and dynamical ramps 

 
Static ramp 

10.54CS S=  Dynamical ramp 

Current error: - ( )ref LI Peak i  84.1 [mA] 11.5 [mA] 
Average output voltage: C Tv< >  9.367 [V] 10.053 [V] 

Response time  0.6 [ms] 0.6 [ms] 

 
 
We note that the system performance with static ramp can be enhanced by reducing the 

ramp slop; however, we enhance the performance by hand and we squeeze the length of 
period 1 zone by the other hand. 

After many simulations we remarked that the slop 10.54CS S=  represent a trade-off 
between the system performance and the length of period 1 zone. Using this slop, figure 9 
illustrates the obtained bifurcation diagram. 

 
 

Period -1: [0.4 -1.32] A 

Period -2 
 

Quasi-periodicity 
 

 
Fig. 9: Bifurcation diagram using static ramp 

 
From this figure we remark the enhancement achieved by the static slop to damp 

perturbation and to shift the first bifurcation. Indeed, the period one in the original behavior 
is ensured for reference values from 0.4A to 0.53A (Fig. 7), whereas the use of static ramp 
allows obtaining a wider period one zone from 0.4A to 1.32A (Fig. 9). Moreover, this 
technique suppresses the chaotic behavior from the area of interest and we have only a 
quasi periodicity oscillation as confirmed by the Lyapunov exponent depicted in figure 10.  
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Fig. 10: Lyapunov exponent for static ramp 

 
Now if we use, instead, the dynamical slop, that vary according to the system dynamics, 

we obtain the bifurcation diagram of figure 11. 
 

Quasi – periodicity 
 

Period -1 
 

[0.4 - 4] A 

 
Fig. 11: Bifurcation diagram using dynamical ramp 

 
Compared to results of figures 7 and 9, the converter behavior under the dynamical ramp 

(Fig. 11) has been enhanced and the system structural stability is ensured. Indeed, we note 
the total undesirable phenomena elimination and the period one (1T) region widening from 
[0.4, 0.53]A  in the original behavior and [0.4, 1.32]A  under static ramp to [0.4, 4.1]A  
under the dynamical ramp (Fig. 11). This facilitates the converter behavior prediction and 
analysis. The abnormal behaviors are efficiently eliminated from the area of interest and we 
have only quasi periodic oscillations and there is no chaotic behavior as shown by 
Lyapunov exponent given in figure 12. Moreover, by comparing results of figure 11 to 
those of figure 9 we remark that with the dynamical slop we have lower amplitude of the 
quasi periodic oscillations than the one ensured by the static ramp.  

 
 

 
Fig. 12: Lyapunov exponent using dynamical ramp 
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Other simulation results, not depicted in this work, shows that obtained structural 
stability is also ensured by the proposed dynamical slop in the case of varying the other 
parameters of the converter such as supply voltage, inductor and load.  
 

5. Conclusion 

In this paper, a dynamical ramp controller for a boost converter, allowing the nonlinear 
phenomena suppression in the operating domain, was proposed. An adequate model was 
used to obtain a more accurate exploration of the different undesirable nonlinear 
phenomena. The principal of ramp compensation was explained. Enhancement is given by 
varying the slop of the ramp according to the system dynamics. A PI law is adopted for the 
slop variation. The PI gains are chosen to ensure the converter peak current to be closer to 
the reference in wide range of operating point variation. Compared to the original behavior 
of the system and to the one ensured by static ramp, simulation results showed the 
dynamical ramp ability to efficiently suppress the undesirable nonlinear phenomena in the 
operating domain, to ensure the desired regulation performance and to enlarge the desired 
period one operating domain. Thus, the system behavior prediction and analysis become 
easier. 
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