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This paper proposes Surface Permanent Magnet Synchronous Motor (SPMSM) Control Strategies with 
Their Neural Network Regression Functions. Because the torque — angle control provides a wide variety of 
control choices in the PMSM drive system. Vector control of PMSM allows for the implementation of 
several choices of control strategies while control over torque is retained. Each of these control strategies 
are described and analyzed in this paper. All motor characteristics for all control techniques are introduced 
in the form of comparisons with such corresponding ones at rated conditions. The required terminal voltage 
to drive the motor at any prescribed technique is predicted. Then a brief description about Artificial Neural 
Network ANN; is illustrated to be used for predicting the required voltage to drive the motor at the desired 
control techniques for set of relations at various frequencies values under the base one. This is done to use 
the ability of neural network for interpolation with suitable number of layers and neurons. Finally, algebraic 
equations for each neural network case are presented to be used without the need of turning the neural 
models at each time.            
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1. Introduction 

      Among the ac drives, permanent magnet synchronous machine (PMSM) drives have been 
increasingly applied in a wide variety of industrial applications. The reason comes from the advantages 
of PMSM: high power density and efficiency, high torque to inertia ratio, and high reliability. Recently, 
the continuous cost reduction of magnetic materials with high energy density and coercitivity (e.g., 
samarium cobalt and neodymium-boron iron) makes the ac drives based on PMSM more attractive and 
competitive. In the high performance applications, the PMSM drives are ready to meet sophisticated 
requirements such as fast dynamic response, high power factor and wide operating speed range. This 
has opened up new possibilities for large-scale application of PMSM. Consequently, a continuous 
increase in the use of PMSM drives will surely be witnessed in the near future [1 - 3]. Sebastian and 
Slemon [4] investigated the maximum torque per ampere (MTPA) operation of PMSM up to a break-
point speed with optimum alignment of the stator and magnet field. Operation at higher speeds with 
reduced torque was achieved by the adjustment of current angle to reduce the effective magnet flux, 
i.e., the equivalent of field weakening. Dhaoudi and Mohan researched a current-regulated flux-
weakening method by introducing a negative current component to create direct-axis flux in opposition 
to that of the rotor flux by magnets, resulting in a reduced air-gap flux. This armature reaction effect 
was used to extend the operating speed range of PMSM and relieve the current regulator from 
saturation that is subject to occurring at high speeds [5]. Similarly, not only a current vector control to 
expand the operating limits under the constant inverter capacity but also the improvement by the feed-
forward decoupling compensation were proposed in [6, 7] respectively by Morimoto et al. In these 
flux-weakening schemes, the demagnetizing current command was calculated based on the 
mathematical model of the PM motor and, consequently, the performance of the PMSM drive system 
was strongly dependent on the motor parameters and sensitive to operating conditions. Sozer and 
Torrey [8] presented an approach for adaptive control of the surface mounted PM motor over its entire 
speed range. The adaptive flux-weakening scheme was able to determine the right amount of direct-
axis current without knowing the load torque and inverter parameters. C. Mademlis, and N. Margaris 
[9], presented an efficiency optimization method for vector-controlled interior permanent-magnet 
synchronous motor drive. Based on theoretical analysis, a loss minimization condition that determines 
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the optimal q-axis component of the armature current was derived. Selected experimental results were 
presented to validate the effectiveness of the proposed control method.  
 

 Jian-Xin, Panda, Ya-Jun, Tong Heng, and Lam, B. H. [10] applied a modular control approach to a 
permanent-magnet synchronous motor (PMSM) speed control. Based on the functioning of the 
individual module, the modular approach enabled the powerfully intelligent and robust control modules 
to easily replace any existing module which did not perform well, meanwhile retaining other existing 
modules which were still effective. Using of ANN (Artificial Neural Network) in the field of electric 
machines especially with PM Synchronous Machine (PMSM) is not strange, like in the followed 
examples. Distinct advantages of the PMSM include low torque ripple, self commutation over a wider 
speed range, more efficient use of the volume of the machine and the ease with which it can be 
controlled [12]. But, there are some difficulties when operating with them, to overcome these 
difficulties, the artificial neural network (ANN) techniques of learning and control provide a natural 
framework for the design of online controllers for drive systems having unknown or uncertain 
dynamics [14]. The ability of the ANN to approximate nonlinear functions is the most significant. With 
the potential to shorten and generalize the model identification task and control scheme configuration, 
neural networks are extensively exploited in many control applications. Nowadays, in the ANN based 
control area, many researchers have been trying to develop efficient on-line adaptive learning 
algorithms for real-time implementation [13, 14-22]. Among them, Dynamic back-propagation (DBP) 
has gained a great attention [14], in which the neural network error gradient is evaluated on-line. In 
order to evaluate the gradient, with respect to the system output error between desired output and actual 
output, an identifier network has also been developed besides the controller network in most of the 
references. This scheme successfully utilizes back propagation of the system output error for the 
gradient evaluation, and extends the traditional static BP to a dynamic learning method in performing 
real-time identification and control. 

 The torque – angle control provides a wide variety of control choices in the PMSM drive system. 
Vector control of PMSM allows for the implementation of several choices of control strategies while 
control over torque is retained. Some key control strategies for the lower than base speed operating 
range are the following [11]:  

(a) Zero D-Axis Current (ZDAC) 

(b) Maximum Torque per Unit Current (MTPC) 

(c) Constant Mutual Flux Linkages (CMFL) 

(d) Unity Power Factor (UPF) 

 Each of these control strategies are described and analyzed in this paper. The deriving of the q and 
d-axis current commands as a function of torque and speed is described in each case. All motor 
characteristics for all control techniques are introduced in the form of comparisons with such 
corresponding ones at rated conditions. The required terminal voltage to drive the motor at any 
prescribed technique is predicted. Then a brief description about Artificial Neural Network ANN; is 
illustrated to be used for predicting the required voltage to drive the motor at the desired control 
techniques for set of relations at various frequencies values under the base one. By using ANN 
capabilities to deduce algebraic equations for each technique to make it easier for user to predict the 
required voltage to drive the motor at this certain technique with prescribed electromagnetic torque and 
desired frequency without training the network at each time.  

2. Zero d-axis Current Control Strategy (ZDAC) 

      The torque angle is defined as the angle between the q-axis current and the d-axis in the rotor 
reference frame. This angle is maintained at 90 degrees in the case of the ZDAC control strategy. The 
ZDAC control strategy is the most widely utilized control strategy by the industry. The d-axis current is 
effectively maintained at zero in this control strategy. The main advantage of this control strategy is 
that it simplifies the torque control mechanism by linearizing the relationship between torque and 
current. This means that a linear current controller results in linear control over torque as well. In dc 
motors the current and magnet fields are always maintained at an angle of 90 degrees. Therefore, the 
ZDAC control strategy makes a PMSM operate in a similar way to the dc motor. This makes the 
ZDAC control strategy very attractive for industrial designers who are used to operating dc motor 
drives. The following relationships hold for the ZDAC control strategy [11]: 



A. El Shahat  et all: PM Synchronous Motor Control Strategies With Their Neural Network Regression Functions 
 

 394

safsafqafe IPIPIPT λλλ 75.0
22

3
22

3
===                                                                                       (1) 

where Is is the phase magnitude, and 

                                 sq II =                                                                                                                   (2) 

                                 0=dI                                                                                                                    (3) 

The air gap flux linkages can be described as  

2
1

222 )( sqafm IL+= λλ                                                                                                                          (4) 

The q and d axes voltages, in steady state, are 

afrssq IRV λω+=                                                                                                                                (5) 

sqrd ILV ω−=                                                                                                                                        (6) 

 
Fig. 1: Constant Torque Angle Control 

      It is notified that; the rate of change of currents is zero in the rotor reference frames, because the 
currents are constant in steady state. The magnitude of the voltage phasor is given by  

22
dqs VVV +=                                                                                                                                  (7) 

From the phasor diagram in figure 1 and the axis voltages, power factor is obtained as 

22
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q
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V
V
V

+
==φ                                                                                                                   (8) 

      This equation implies that the power factor deteriorates with increasing rotor speed as well as with 
increasing stator current. The ZDAC control strategy is the only control strategy that enforces zero d-
axis current. This is one of the disadvantages of this control strategy as compared to the other control 
strategies. A non-zero d-axis current has the advantage of reducing the flux linkages in the d-axis by 
countering the magnet flux linkages. This serves to generate additional torque for inset and interior 
PMSM, and also reduces the air gap flux linkages. The following figures present comparisons between 
the surface permanent magnet motor characteristics at this control strategy with such ones at rated 
conditions. Then the required voltage to drive the motor at its rated frequency is presented. Finally, set 
of required voltages to drive the motor with this control strategy at various frequencies under rated one; 
which will consider being the learning data in the neural model in the next section.  
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Fig. 2: Current Comparison at ZADC and rated conditions 
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Fig. 3: Copper Loss Comparison at ZADC and rated conditions 
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Fig. 4: Input Power Comparison at ZADC and rated conditions 
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Fig. 5: Power Factor Comparison at ZADC and rated conditions. 
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Fig. 6: Efficiency Comparison at ZADC and rated conditions 

      From all previous figures; it is clear that all performance characteristics are improved when 
proposing this technique as shown. Also, the required voltage at rated frequency to drive the motor at 
this control type is presented.    
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Fig. 7: Required Voltage to drive the motor with ZADC at Various Frequencies 

 
The last set of relations introduced in figure 7 will be used in the next sections as training or learning 
data in the neural network model proposed there.  

3. Artificial Neural Networks (ANNs) Technique 

A.  Introduction 

      An ANN consists of very simple and highly interconnected processors called neurons. The neurons 
are connected to each other by weighted links over which signals can pass. Each neuron receives 
multiple inputs from other neurons in proportion to their connection weights and generates a single 
output which may propagate to several other neurons [25]. Among the various kinds of ANNs that 
exist, the Back-propagation learning algorithm has become the most popular used method in 
engineering application. It can be applied to any feed-forward network with differentiable activation 
functions [26], and it is the type of network used in this paper.  

B.  Fundamentals of Neural Network 

      The ANN modeling is carried out in two steps; the first step is to train the network, whereas the 
second step is to test the network with data, which were not used for training. It is important that all the 
information the network needs to learn is supplied to the network as a data set. When each pattern is 
read, the network uses the input data to produce an output, which is then compared to the training 
pattern. If there is a difference, the connection weights are altered in such a direction that the error is 
decreased. After the network has run through all the input patterns, if the error is still greater than the 
maximum desired tolerance, the ANN runs through all the input patterns repeatedly until all the errors 
are within the required tolerance [27], [28].  
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C. Data Collection, Analysis and Processing 

      The quality, availability, reliability, repeatability, and relevance of the data used to develop and run 
the system is critical to its success. Data processing starts from the data collections and analysis 
followed by pre-processing and then feeds to the neural network.  

D. Network Structure Design 

      Though theoretically there exists a network that can simulate a problem to any accuracy, there is no 
easy way to find it. To define an exact network architecture such as how many hidden layers should be 
used, how many units should there be within a hidden layer for a certain problem is a painful job.  

1)  Number of Hidden Layers 

      Because networks with two hidden layers can represent functions with any kind of shapes, there is 
no theoretical reason to use networks with more than two hidden layers. In general, it is strongly 
recommended that one hidden layer be the first choice for any feed-forward network design [25-28]. 

2)  Number of Hidden Units (node) 

      Another important issue in designing a network is how many units to place in each layer. Using too 
few units can fail to detect the signals fully in a complicated data set, leading to under fitting. Using too 
many units will increase the training time, perhaps so much that it becomes impossible to train it 
adequately in a reasonable period of time. The best number of hidden units depends on many factors – 
the numbers of input and output units, the number of training cases, the amount of noise in the targets, 
the complexity of the error function, the network architecture, and the training algorithm. The best 
approach to find the optimal number of hidden units is trial and error. 

3) Initializing Back-Propagation feed-forward network  

      Back-propagation is the most commonly used method for training multi-layer feed-forward 
networks. For most networks, the learning process is based on a suitable error function, which is then 
minimized with respect to the weights and bias. The algorithm for evaluating the derivative of the error 
function is known as back-propagation, because it propagates the errors backward through the network.  

4) Training the network 

      Training occurs according to any training function as previous and we must decide the training 
parameters with their default values: The order used for training is for example 
[net, tr] = train (net, pn, tn) 
where pn, tn is the input and output which are normalized 

5) Network simulation 

      To obtain the output of the network, we must simulate it the order, which can be used, is an = sim 
(net, pn); where an:  is the network but normalized so if we want to un - normalize it we use this order a 
= poststd (an, meant, stdt). To Performs a linear regression between the network response the target, 
and computes the correlation coefficient use the order (R value between the network response and the 
target). [m, b, r] = postreg (a, t) [Matlab\ toolbox]; where a, t are the network output and desired or 
actual output and returns, M - Slope of the linear regression; B - Y intercept of the linear regression; R 
- Regression R-value.  R=1 means perfect correlation. 

6) Weights and Bias  

      The weights and bias, can be obtained from training data by the orders; Net.iw {1, 1}…for the 
weight from input layer to hidden layer; Net. {b1} ……bias to a hidden layer 
Net.lw {2, 1}…for the weight from hidden layer to output layer; Net. {b2}…     bias to output layer 
from a hidden layer 

7) Testing the network 

      At first the data for testing mainly the input and the output from the network is prepared and then is 
compared with the desired or actual output to test the ability of the network by using the same 
initialized network. 
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[p1n, meanp1, stdp1, t1n, meant1, stdt1] = prestd (p1, t1) 
net = train (net, p1n) ; an1 = sim (net, p1); [a1] = poststd (an1, meant1, stdt1); [m, b, r]=postreg (a1, t1) 
where: p1, t1 are testing data, an1: is normalized output, a1: un- normalized output  

8) Derived mathematical equations  

      Finally mathematical equations can be derived [29], in order to be used in future to calculate the 
output from the input data without needing to construct a neural network by using the weights and bias 
according to activation and transfer functions as when using {logsig 'purelin} as in this paper, the next 
sequences have to be followed  
1- Normalize the input data as shown previous . 
2- Calculate sum of   xi*w {i, j} +b {i} = hi for each node in hidden layer     
    where: xi: is the input variable, hi: is a hidden layer input from input layer w {i, j} ,b {i}  are  
     obtained before,  Net.iw{1,1} Net.b{1} 
3- Calculate the output from each node in hidden layer to output layer (Fi) according to transfer   
     function here is logsig so Fi =1/(1+exp(-hi)      
4- Calculate the sum of output from hidden layer to output layer hi =Fi *Net.lw{2,1}+Net.b{2}    
5- Calculate the required output according to transfer fun. here is purelin [Matlab/toolbox] so output  
     (yi) = hi according to number of the required outputs 
6- Un normalized y to obtain the output = y*stdt + meant   ...to obtain the actual values 

4. Ann Zero d-axis Current Control Model with Its Equation  

      Using the neural network technique described before in implementing a neural model to connect 
between three variables that: entering the desired frequency and electromagnetic torque range as input 
to generate the required voltage to drive the motor at this technique for this range of frequencies under 
the base one. This model tries to make more generalization for these relations in figure 7 to make 
benefits from the ability of neural network of interpolation between points and also curves. Finally, the 
algebraic equation is deduced to use it without training the neural unit in each time. One can ask a 
question that; why the curve fitting facility could not be used for more simplicity? The answer is this 
could be used for single curve but neural equation given more globalization view. Also, this model has 
a suitable number of layers and neurons in each layer on the basis prescribed before. This model is 
summarized in figure 8. 
 

 
 

Fig. 8: ZADC Neural Model 

      This neural model has the ability to deal with all curves in figure 7 as surface or mapping face as 
shown in figure 9, due to this technique advantages especially its ability to interpolation between points 
with each other and also curves.  
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Fig. 9: The relation among Req. Voltage, frequency, and Torque 
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Fig. 10: Training result for Neural Model 

  
Fig. 11: Comparison of actual and ANN-predicted values for Voltage 

(0.6048) / 0.9510) -(T  T een =                                                                                                              (9) 

) - (f  f (19.4344 / 39.5238)=n                                                                                                           (10) 

Equations (9), and (10) present the normalized inputs for electromagnetic torque and frequency, and the 
following equations lead to the required voltage derived equation. 

E1)) (- exp  (1 / 1F1
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                                                                                          (11) 

E2)) (- exp  (1 / 1F2
2.3064  f 0.6995 -  T 0.1165 -  E2 nen
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                                                                                      (12) 

E3)) (- exp  (1 / 1F3
 3.3650  f 5.6780 -  T 4.8308 E3 nen

+=
++=

                                                                                         (13) 

E4)) (- exp  (1 / 1F4
 0.3754 -  f 0.1676 -  T 0.0149 - E4 nen

+=
++=

                                                                                    (14) 

11.5669  F4 24.6252 -  F3 0.0002  F2 0.8953 -  F1 1.2914 -  Vsn ++++=                                      (15) 

The un- normalized out puts 

77.9837  V 34.9537  V sns +=                                                                                                             (16) 

5. Max. Torque per Unit Current Control Strategy (MTPC) 

      The MTPC control strategy is the most widely studied control strategy. Application of this control 
strategy results in the production of maximum possible torque at any given current. This control 
strategy minimizes current for a given torque. Consequently, copper losses are minimized in the 
process. For the types of PMSM that do not exhibit magnetic saliency the MTPC and ZDAC control 
strategies are the same. The MTPC control strategy results in maximum utilization of the drive as far as 
current if concerned [11]. This is due to the fact that more torque is delivered for unit current as 
compared to other techniques. This means the ZDAC control strategy presented in previous section 
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with its neural network model are the same as for MTPC control strategy for SPMSM which we deal 
with it in this study. So, as affirmative figure on this idea, figure 12 shows the torque per ampere ratio 
from ZDAC control i.e. MTPC in comparable with such on at rated conditions.     
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Fig. 12: Torque per Amp. Ratio Comparison at ZADC and rated conditions 

      The maximum torque per ampere technique for (IPMSM) Interior Permanent Magnet Synchronous 
Motor is also introduced with its neural network model before by the same authors [23, 24].   

6. Unity Power Factor Control Strategy (UPF) 

      Unity – power – factor (UPF) control implies that the VA rating of the inverter is fully utilized for 
real power input to the PMSM [11]. UPF control is enforced by controlling the torque angle as a 
function of motor variables. The performance equations in this mode of operation are derived and given 
below. 

safsafe IPIPT λαλ 75.0sin
22

3
==                                                                                                   (17) 

afrsdr IL λωαωα ++= cossin  I R  v ssq                                                                                        (18) 

αωα sin cos I R  v ssd sqr IL−=                                                                                                      (19) 

 
Fig. 13: Phasor diagram of the PM synchronous machine 

The angle between d axis and the resultant voltage Vs is   

d

q

v
v

=+ )tan( φα                                                                                                                                   (20) 

Since the power factor angle has to be zero in this control type 
0=φ                                                                                                                                                      (21) 

which gives the following relationship for the torque angle: 

d

q

v
v

=αtan                                                                                                                                            (22) 

Upon substitution of equations above into (22) 
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      The following figures present comparisons between the most important characteristics at this 
control technique with such ones at rated conditions. This is done to imply the performance 
improvement due to this technique. 
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Fig. 14: Power Factor Comparison at UPF and rated conditions 
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Fig. 15: Copper Loss Comparison at UPF and rated conditions 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1000

1500

2000

Electromagnetic Torque (N.m)

In
pu

t P
ow

er
 (

W
at

t)

 

 

At UPF
At Rated

 
Fig. 16: Input Power Comparison at UPF and rated conditions 
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Fig. 17: Efficiency Comparison at UPF and rated conditions 
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Fig. 18: Required Voltage at UPF with Torque for variable frequency 

      From all previous figures; it is clear that all performance characteristics are improved when 
proposing this technique as shown. Also, the required voltage at various frequencies to drive the motor 
at this control type is presented in fig. 18. These relations introduced in figure 18 will be used in the 
next section as training or learning data in the neural network model proposed there.  

7. Unity Power Factor Control Strategy Neural Model  

      Using the neural network technique described before in implementing a neural model to connect 
between three variables that: entering the desired frequency and electromagnetic torque range as input 
to generate the required voltage to drive the motor at this technique for this range of frequencies under 
the base one. This model uses the relations in figure 18 as training or learning data. Then its algebraic 
equation is deduced to use it without training the neural unit in each time. This model has a suitable 
number of layers and neurons in each layer on the basis prescribed before. This model is summarized 
as in figure 8 for the same number of layers and neuron. 
 

 
Fig. 19: Training result for Neural Model 

 
Fig. 20: Comparison of actual and ANN-predicted values for Voltage 
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.5875)0.9327)/(0 -(T  T een =                                                                                                             (26) 

)237 - (f  f (19.4 / 39.5238)=n                                                                                                           (27) 

Equations (26), and (27) present the normalized inputs for electromagnetic torque and frequency, and 
the following equations lead to the required voltage derived equation. 
 

E1)) (- exp  (1 / 1F1
1.8242-  f 0.4525  T 0.0650  E1 nen

+=
++=

                                                                                         (28) 

E2)) (- exp  (1 / 1F2
0.2329-  f 0.1741 -  T 0.2508  E2 nen

+=
++=

                                                                                      (29) 

E3)) (- exp  (1 / 1F3
 0.8434-  f 0.2417 -  T 0.0412- E3 nen

+=
++=

                                                                                    (30) 

E4)) (- exp  (1 / 1F4
 7.3055 f 1.4749 T 4.7437 E4 nen

+=
++=

                                                                                          (31) 

4.0633  F4 0.0010-  F3 14.7606-  F2 0.4342-  F1 4.1053  Vsn ++++=                                        (32) 

The un- normalized out puts 

77.6676  V 34.7999 V sns +=                                                                                                             (33) 

8. Constant Mutual Flux Linkages Control Strategy (CMFL) 

      In this control strategy, the resultant flux linkage of the stator q and d axes and rotor, known as the 
mutual flux linkage, is maintained constant, most usually at a value equal to the rotor flux linkage, λaf. 
Its main advantage is that, by the limiting of the mutual flux linkages, the stator voltage requirement is 
kept comparably low. In addition, varying the mutual flux linkages provides a simple and 
straightforward flux-weakening for operation at speeds higher than the base speed. Hence, mutual flux 
linkages control is one of the powerful techniques useful in the entire speed range, as against other 
schemes that are limited to operation lower than the base speed only. The mutual flux linkage is 
expressed as follows [11]: 

22 )()( qqddafm ILIL ++= λλ                                                                                  (34) 

and, for example, equating it to the rotor flux linkages as 

  afm λλ =                                                                                                                    (35) 

and substituting for the direct and quadrature axis currents in terms of the stator current phasor.  

222 )()( qqddafaf ILIL ++= λλ                                                                                   (36) 

2222 )()(2 qqddddafafaf ILILIL +++= λλλ  

αααλ 222222 sincoscos20 sqsdsdaf ILILIL ++=   

For surface PM Synchronous Motor sqd LLL ==  

)sin(coscos20 22 αααλ ++= ssaf IL   

)
2

(cos
2

cos 1

af

ss

af

ss ILIL
λ

α
λ

α −=⇒−= −                                                                         (37) 
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The following figures present comparisons between the various characteristics at this control technique 
with such ones at rated conditions. This is to show the performance improvement due to this technique. 
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   Fig. 21: Flux Linkage Comparison at CMFL and rated conditions 
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   Fig. 22: Copper Loss Comparison at CMFL and rated conditions 
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   Fig. 23: Input Power Comparison at CMFL and rated conditions 
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   Fig. 24: Power Factor Comparison at CMFL and rated conditions 
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   Fig. 25: Efficiency Comparison at CMFL and rated conditions 
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Fig. 26: Required Voltage at CMFL with Torque for variable frequency 

9. Constant Mutual Flux Linkages Control Neural Model  

      Using the neural network technique described before in implementing a neural model to connect 
between three variables that: entering the desired frequency and electromagnetic torque range as input 
to generate the required voltage to drive the motor at this technique for this range of frequencies under 
the base one. This model uses the relations in figure 26 as training or learning data. Then its algebraic 
equation is deduced to use it without training the neural unit in each time. This model has a suitable 
number of layers and neurons in each layer on the basis prescribed before. This model is summarized in 
figure 8 also. 

 
Fig. 27: Training result for Neural Model 

 
Fig. 28: Comparison of actual and ANN-predicted values for Voltage 

.5891)0.9342)/(0 -(T  T een =                                                                                                             (38) 

)237 - (f  f (19.4 / 39.5238)=n                                                                                                           (39) 

Equations (38), and (39) present the normalized inputs for electromagnetic torque and frequency, and 
the following equations lead to the required voltage derived equation. 
 

E1)) (- exp  (1 / 1F1
1.4514-  f 0.3084  T 0.0421 E1 nen

+=
++=

                                                                                           (40) 

E2)) (- exp  (1 / 1F2
5.8556-  f 9.3254-  T 7.2669  E2 nen

+=
++=

                                                                                      (41) 
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E3)) (- exp  (1 / 1F3
 1.2116-  f 0.2658-  T 0.0363- E3 nen

+=
++=

                                                                                    (42) 

E4)) (- exp  (1 / 1F4
11.0087  f 3.4972  T 4.9406E4 nen

+=
++=

                                                                                          (43) 

1.0591  F4 0.00001-  F3 12.0351-  F2 0.00002-  F1 8.9681  Vsn ++++=                                      (44) 

The un- normalized out puts 

77.7624  V 34.8587 V sns +=                                                                                                             (45) 

10. Conclusions  

Control Strategies of Surface Permanent Magnet Synchronous Motor (SPMSM) are presented in this 
paper. Moreover, Neural Network Models with Algebraic Regression Functions for each control 
technique are deduced. These control strategies are depending on the torque – angle because of a wide 
variety of control choices in the PMSM drive system, and the allowance for the implementation. Each 
of these control strategies are described and analyzed in this paper. All motor characteristics for all 
control techniques are introduced in the form of comparisons with such corresponding ones at rated 
conditions to show the deal of performance improvement. The required terminal voltage to drive the 
motor at any desired control technique is deduced for any frequency values under the base speed. This 
study affirms on the advantages and disadvantages of these various techniques as the following: The 
ZDAC control strategy is the most widely utilized control strategy by the industry. The d-axis current is 
effectively maintained at zero in this control strategy. The main advantage of this control strategy is 
that it simplifies the torque control mechanism by linearizing the relationship between torque and 
current. The ZDAC control strategy is the only control strategy that enforces zero d-axis current. This 
is one of the disadvantages of this control strategy as compared to the other control strategies. A non-
zero d-axis current has the advantage of reducing the flux linkages in the d-axis by countering the 
magnet flux linkages. This serves to generate additional torque for inset and interior PMSM, and also 
reduces the air gap flux linkages. Then, the MTPC control strategy is the most widely studied control 
strategy. For the types of PMSM that do not exhibit magnetic saliency the MTPC and ZDAC control 
strategies are the same. The MTPC control strategy results in maximum utilization of the drive as far as 
current if concerned. Later, Unity – power – factor (UPF) control implies that the VA rating of the 
inverter is fully utilized for real power input to the PMSM.  Finally, the main advantage of CMFL is 
that, by the limiting of the mutual flux linkages, the stator voltage requirement is kept comparably low. 
In addition, varying the mutual flux linkages provides a simple and straightforward flux-weakening for 
operation at speeds higher than the base speed. Hence, mutual flux linkages control is one of the 
powerful techniques useful in the entire speed range, as against other schemes that are limited to 
operation lower than the base speed only. For all neural models the inputs are the desired frequency and 
electromagnetic torque range as to generate the required voltage to drive the motor at any desired 
technique with this range of frequencies under the base one. This model tries to make more 
generalization for these voltages relations to make benefits from the ability of neural network of 
interpolation between points and also curves. The algebraic equation is deduced to use it without 
training the neural unit in each time.  Also, this model has a suitable number of layers and neurons in 
each layer on the basis prescribed before. This neural model has the ability to deal with all curves as 
surface or mapping face, due to this technique advantages. All neural network units are the back 
propagation (BP) learning algorithm due to its benefits. The validity of these units comes from 
comparisons between techniques values obtained in MATLAB environment with corresponding from 
Neural Networks. Also, this technique will be used further in more complex systems. 

Appendix  

SPMSM ratings and parameters: Lq = 0.0115 H; Ld = 0.0115 H; λaf = 0.283; P = 4; Rs = 6.8 Ω; Vs = 200 
V; Ns = 2000 rpm; B = 0.0005416; J = 0.0000144; Td = 0.1698 
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