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This paper reports an application of Multi-objective Evolutionary algorithm for solving the security 
enhancement problem. Generation rescheduling and adjustment of TCSC are used to alleviate the 
line overload. The probable locations of TCSC are pre-selected based on Line overload Sensitivity 
(LOS) index which ranks the system branches according to their severity. The security 
enhancement problem is formulated as a multi-objective optimization problem with minimization 
of investment cost of Thyristor Controlled Series Capacitor (TCSC) and minimization of control 
variable adjustment cost as objectives. Non-dominated sorting algorithm is applied to solve this 
multi-objective optimization problem. The proposed approach has been evaluated on the IEEE 30-
bus test system. Simulation results show the effectiveness of the proposed approach for solving the 
multi-objective optimal power flow problem 

Keywords: Power system security, Flexible AC transmission system (FACTS) devices, Thyristor 
Controlled Series Capacitors (TCSCs), Genetic Algorithm, Non –dominated sorting genetic 
algorithm, Pareto optimal frontier. 

1. Nomenclature 

Gij, Bij  Mutual conductance and susceptance between bus i and bus j . 
Gii,Bii  Self-conductance and susceptance of bus i . 
Gk Conductance of branch k. 
FT Total  Fuel cost. 
NB Total number of buses. 
NB–1 Total number of buses excluding slack bus. 
NPQ Number of PQ buses. 
Ng Number of generator buses. 
Nl Number of branches in the system. 
Pi,Qi  Real and reactive powers injected into network at bus i. 
Pgi, Qgi Real and reactive power generation at bus i  
Sl  Apparent power flow through the lth branch. 
Sl

max Apparent power flow limit  through the lth branch. 
Vi  Voltage magnitude at bus i. 
Vj Voltage magnitude at bus j. 
θij Voltage angle difference between bus i and bus j. 

2. Introduction 

In any power system, unexpected outages of transmission lines occur due to faults or 
other disturbances. These events referred to as contingencies, may cause significant 
overloading of transmission lines, which in turn may lead to total or partial blackout. 
Transmission line overload can be alleviated by re-routing power flows in the system. A 
change in line flow can be caused by an appropriate change in phase angles and magnitude 
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of bus voltages, which are usually referred to as state variables. The state variables can, in 
turn, be modified by a variation in generated power [1-3]. 

Optimal Power Flow (OPF) is the important tool used in Energy Management System 
for security enhancement. The OPF problem aims to optimize one or more objectives by 
adjusting the power system control variables while satisfying a set of operational and 
physical constraints. It is a mixed-integer non-linear optimization problem with a large 
number of variables. The integer variables appear in the mathematical formulation owing to 
the discrete nature of the transformer tap positions and the capacitor bank. A wide variety 
of optimization techniques have been applied to solve the OPF problem. These include 
gradient method [4-5], Newton method, linear programming [6] and Interior Point Method 
(IPM). Unfortunately, an OPF problem is a highly nonlinear optimization problem. 

Therefore, conventional optimization methods that make use of derivatives and 
gradients, in general, are not able to locate or identify the global optimum. Further, many 
mathematical assumptions such as analytic and differential objective functions have to be 
given to simplify the problem. Hence, it becomes essential to develop optimization 
techniques that are efficient to overcome these drawbacks and difficulties. Evolutionary 
Computation techniques like Genetic Algorithm (GA) [7-8] and Evolutionary Programming 
[9,10] have been proposed to overcome these difficulties. Evolutionary Computation 
techniques do not require any space limitations such as smoothness, convexity or uni-
modality of the function to be optimized. This feature makes it suitable for many real-world 
applications, including the OPF problem.  

FACTS devices [11-17] based on power electronics technology represents an active tool 
for the control of active power as well as reactive power or voltage control. A good 
coordination between FACTS devices and the conventional power system control devices is 
necessary to make the power systems operating in a more secure and economic way. 
Therefore, it becomes necessary to extend the available power system analysis tools such as 
optimal power flow to include the FACTS devices. Several papers [18-19] have been 
published in dealing with OPF incorporating FACTS devices. For a large-scale power 
system, more than one FACTS device may have to be installed in order to achieve the 
desired performance. Studies have been conducted to find suitable location for FACTS 
devices to improve power system security. In [16], optimal location of multi type FACTS 
devices was presented. Here, the system loadability was employed as a measure of power 
system performance. In [17], the authors presented a systematic procedure to place and 
operate TCSCs in a power system. 

While using FACTS devices for the performance of power system, the installation costs 
need to be taken in to account. In addition, the limited amount of time to alleviate the 
overload is itself a security concern and it is further complicated by the fact that controls 
can not move instantaneously. Generator ramp rates can significantly restrict the speed with 
which active power is rerouted in the network. Hence, during the rescheduling of the 
generators to alleviate overload in the contingency state one of the objectives should be to 
minimize the deviation of the control variables from the base case value. This objective has 
not been considered in many of the literatures. This paper focuses on the rescheduling of 
generator power and adjustment of TCSC for security enhancement taking minimization of 
installation cost and control variables deviation as the objectives .The presence of multiple 
objectives in a problem gives rise to a set of optimal solutions, known as Pareto-optimal 
solutions. In the absence of any further information, one of these Pareto-optimal solutions 
can not be said to be better than the other. This demands a user to find as many Pareto-
optimal solutions as possible.  
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Generally, the multi-objective optimization problems are converted to a single objective 
problem by linear combination of different objectives as a weighted sum [20] .The 
important aspect of this weighted sum method is that a set of non-inferior (or Pareto-
optimal) solutions can be obtained by varying the weights. Unfortunately, this requires 
multiple runs as many times as the number of desired Pareto-optimal solutions. 
Furthermore, this method cannot be used to find Pareto-optimal solutions in problems 
having a non-convex Pareto-optimal front. To avoid this difficulty, the Є-constraint method 
[21-22] is used for multi-objective optimization problem. This method is based on 
optimizing the most preferred objective and considering the other objectives as constraints 
bounded by some allowable levels. These levels are then altered to generate the entire 
Pareto-optimal set. It is obvious that this approach is time-consuming and tends to find 
weakly non-dominated solutions. 

The recent research direction is to handle both objectives simultaneously as competing 
objectives. The studies on evolutionary algorithms [23-26] have shown that these methods 
can be efficiently used to eliminate most of the difficulties of classical methods. Since they 
are population-based techniques, multiple Pareto-optimal solutions can, in principle, be 
found in one single run. 

In this paper, Non-dominated sorting genetic algorithm (NSGA) [27] is proposed for 
solving the multi-objective security optimization problem. The dual objectives in a multi-
objective optimization algorithm are maintained by using a fitness assignment scheme 
which prefers non-dominated solutions and by using a sharing strategy which preserves 
diversity among solutions of each non-dominated front. 

The main advantage of an NSGA is the assignment of fitness according to non-
dominated sets. Since, better non-dominated sets are emphasized systematically, an NSGA 
progresses towards the Pareto-optimal region front-wise. Moreover, performing sharing in 
the parameter space allows phenotypically diverse solutions to emerge when using NSGAs. 
If desired, the sharing can also be performed in the objective space. 

The effectiveness and potential of the proposed approach to solve the multi-objective 
OPF problem has been demonstrated using IEEE 30-bus system 

3. Severity Index  

The severity of a contingency to line overload may be expressed in terms of the 
following severity index, which express the stress on the power system in the post 
contingency period: 
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 where,  

        Sl      = MVA flow in line ‘l’     

        Sl
max = MVA rating of the line ‘l’    . 

        L0     = set of overloaded lines. 

        m     = integer exponent. 

Larger the severity index value a contingency has, the more severe it will be.  The line 
flows in (1) are obtained from Newton-Raphson load flow calculations. While using the 



 4 

above severity index for security assessment, only the overloaded lines are considered to 
avoid masking effect.  

4. Modeling and placement of Thyristor Controlled Series Capacitor (TCSC) 

Thyristor Controlled Series Capacitor (TCSC) consists of a fixed capacitor in parallel 
with a thyristor controlled reactor. The primary function of the TCSC is to provide variable 
series compensation to a transmission line. This changes the line flow due to change in 
series reactance. The equivalent circuit of TCSC module is shown in Fig.1.  

 
Fig.1. Equivalent circuit of TCSC 

The TCSC reactance is given by                                                       

lineTCSCc xxx =
                          (2) 

where,  

      xline is the reactance of the transmission line.  

      xTCSC is the coefficient which represents the degree  of compensation by TCSC.  

To avoid overcompensation, the working range of the TCSC is chosen between (–0.5 X line 
and  0.5  X line). 

The power flow equations of a transmission line with TCSC can be written as     
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The only difference between normal line power flow equation and the TCSC line power 

flow equation is the presence of the controllable reactance xc which is varied by adjusting 
the value of TCSC reactance.  

To enhance the security of the system, the TCSC has to be placed at the suitable 
locations. To determine the best location of TCSC, an index called Line overload sensitivity 
(LOS) index is calculated for all considered contingencies. The LOSj for branch “j” is 
defined as the sum of the severity index of branch “j” to all considered contingencies ‘l’, 
expressed as, 
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 To identify the suitable location for placement of TCSC, first the LOS values are 
calculated for all branches using (4). Then the branches are ranked by their corresponding 
LOS values. The locations of the TCSCs are determined according to the ranking of 
branches and system topology. The locations are chosen starting from the top of the ranking 
list and proceeding downward with as many branches as the number of available TCSCs.  

5. Problem Formulation 

In general, the OPF problem is formulated as an optimization problem in which one or 
more objective functions are minimized while satisfying a number of equality and 
inequality constraints. In the security enhancement problem considered here the goal is to 
determine the optimal values of TCSCs and generator active power that enhance the 
systems security level while minimizing the investment cost of TCSC and the control 
variable movement. The mathematical formulation of the security enhancement problem is 
given below: 

5.1 Objective functions  

Control variable adjustment (FC): 

While enhancing the security of the systems, it is preferred to have minimum deviation 
of the generator real power from the base value [28]. This is stated as, 

∑
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where NC is the number of control variables; ui and ui
0 are the new and initial settings of 

the ith control variable respectively; and wi is a weighting factor to reflect the relative cost 
of the ith control variable. ui

max and ui
min are the maximum and minimum limits of the ith 

control variable. 

TCSC cost function (FE)  

It is important to take the economical aspects of the FACTS devices present in the 
power systems due to high investment and operating costs. The cost function for TCSC [29, 
30] is given by,  

 

FE =0.0015S2-0.71S+153.75 (US$/KVAR)                   (6) 

  

Where,  

   S = Operating range of TCSC=|S2-S1|  

   S1=Apparent power flow through branch before placing TCSC  

   S2=Apparent power flow through branch after    placing TCSC 

Multi-objective function  

The multi-objective optimization problem is therefore formulated as:  

Minimize FT = [FC ,FE]                                   (7)   
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Problem Constraints  

• Load flow constraints  
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• Voltage constraint  

    Biii NiVVV ∈≤≤ ,maxmin
          (10) 

• Real Power Generation limit 

     gggg NgPPP ∈≤≤ ,maxmin
          (11) 

• Generator reactive power generation limit  

     gggg NgQQQ ∈≤≤ ,maxmin

                                  (12) 

• Limit on reactance of TCSC 

      TCSCiTCSCiTCSCiTCSC NiXXX ∈≤≤ ,max
,,

min
,          (13) 

• Transmission line flow limit  

       lll NlSS ∈< ,max
                                                             (14) 

6 Multi-objective Genetic Algorithm 

Genetic algorithms (GA) [25] are generalized search algorithms based on the 
mechanics of natural genetics. GA maintains a population of individuals that represent the 
candidate solutions. Each individual is evaluated to give some measure of its fitness to the 
problem from the objective function. They combine solution evaluation with stochastic 
genetic operators namely, selection, crossover and mutation to obtain optimality. Being a 
population-based approach, GA is well suited to solve multi-objective optimization 
problems. A generic single-objective GA can be modified to find a set of multiple non-
dominated solutions in a single run. The ability of GA to simultaneously search different 
regions of a solution space makes it possible to find a diverse set of solutions for problems 
with non-convex, discontinuous and multi-model solution spaces. This paper applies Non-
dominated Sorting Genetic Algorithm (NSGA) to solve the multi-objective OPF problem. 
The details of NSGA are presented below: 

6.1 Non-dominated Sorting Genetic Algorithm (NSGA) 

NSGA differs from simple genetic algorithm only in the way the selection operator 
works. The crossover and mutation operators remain the same. Before the selection is 
performed, the population is ranked on the basis of an individual's non-domination. The 
non-dominated individuals present in the population are first identified from the current 
population. Then, all these individuals are assumed to constitute the first non-dominated 
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front in the population and assigned a large dummy fitness value. The same fitness value is 
assigned to give an equal reproductive potential to all these non-dominated individuals. In 
order to maintain diversity in the population, these classified individuals are then shared 
with their dummy fitness values. Sharing [27] is achieved by performing selection 
operation using degraded fitness values which are obtained by dividing the original fitness 
value of an individual by a quantity proportional to the number of individuals around it. 
This causes multiple optimal points to co-exist in the population. 

After sharing, these non-dominated individuals are ignored temporarily to process the 
rest of population in the same way to identify individuals for the second non-dominated 
front. These new set of points are then assigned a new dummy fitness value which is kept 
smaller than the minimum shared dummy fitness of the previous front. This process is 
continued until the entire population is classified into several fronts. The population is then 
reproduced according to the dummy fitness values. A tournament selection is used in this 
work. Individuals in the first front have the maximum fitness value, they always get more 
copies than the rest of population. This was intended to search for non-dominated regions 
or Pareto-optimal fronts. This results in quick convergence of the population towards non-
dominated regions and sharing helps to distribute it over this region. By emphasizing non-
dominated points, NSGA is actually processing the schemata representing Pareto-optimal 
regions. The efficiency of NSGA lies in the way multiple objectives are reduced to a 
dummy fitness function using non-dominated sorting procedure. Fig. 2 shows a flow chart 
of this algorithm. The algorithm is similar to a simple GA except the classification of non-
dominated fronts and the sharing operation. The sharing in each front is achieved by 
calculating a sharing function value between two individuals in the same front as  

⎪
⎩

⎪
⎨

⎧
<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=

Otherwise

dif
d

dSh shareij
share

ij

ij

0

,1)(

2

σ
σ

       (15) 
In the above equation, the parameter dij is the phenotypic distance between two 

individuals i and j in the current front and share is the maximum phenotypic distance 
allowed between any two individuals to become members of a niche. Some guidelines to 
set these parameters are given in [27]. A parameter niche count is calculated by adding the 
above sharing function values for all individuals in the current front. Finally, the shared 
fitness value of each individual is calculated by dividing its dummy fitness value with its 
niche count.  

7. Genetic Algorithm Implementation 

While applying GA for solving the OPF problem, the following issues need to be 
addressed: 

• Solution Representation and 
• Fitness evaluation. 

7.1 Solution Representation 

Implementation of GA for a problem starts with the   parameter   encoding   (i.e.,   the   
representation   of   the problem). Each individual in the genetic population represents a 
candidate solution. The solution variables are represented by a string of binary alphabets. 
The size of the string depends on the precision of the solution required. For problems with 
more than one decision variable, each variable is represented by a substring and all the 
substrings are concatenated to form a bigger string.  In the OPF problem under 
consideration, generator active-power Pgi, and  TCSCs settings are the optimization 
variables. 
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7.2  Evaluation Function 
GA searches for the optimal solution by maximizing a given fitness function, and 

therefore an evaluation function which provides a measure of the quality of the problem 
solution must be provided. In the OPF problem under consideration, the objective is to 
minimize the investment cost of TCSC and control variable adjustment cost satisfying the 
constraints. The equality constraints given by equations (8) & (9) are satisfied by running 
the power flow program. The active power generation (Pgi) (except the generator at the 
slack bus) and generator terminal bus voltages (Vgi) are the control variables and they are 
self-restricted by the optimization algorithm. The limit on active power generation at the 
slack bus (Pgs), load bus voltages (Vload), reactive power generation (Qgi) and line flow (Sl) 
are satisfied through penalty function approach. With the inclusion of the penalty function 
the new objective function becomes,     

 
Fig.2. Flowchart of NSGA 
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where,  

SP, VPj, QPj , and LPl are the penalty terms for the reference bus generator active 
power limit violation, load bus voltage limit violation, reactive power generation limit 
violation and the line flow limit violation respectively.  

These quantities are defined by the following equations: 
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GA is usually designed to maximize the fitness function which is a measure of the 

quality of each candidate solution. Hence in this work, we employed as GA’s fitness the 
inverse of the objective function                               

8.  Simulation Results 

The proposed genetic algorithm approach has been applied to solve the optimal power 
flow problem in IEEE-30 bus test system which is shown in Fig. 3. The IEEE 30-bus 
system  has  6  generator  buses, 24 load buses and 41 transmissions lines of which  4 
branches (6-9), (6-10), (4-12) and (28-27) are with tap setting transformers. The upper and 
lower voltage limits at all the bus bars except slack are taken as 1.10 p.u and 0.95p.u 
respectively. The slack bus bar voltage is fixed to its specified value of 1.06 p.u. 

The generator cost coefficients and the transmission line parameters are taken from [5]. 
It is assumed that the impedance of all TCSCs can be varied within 50% of the 
corresponding branch impedance. 

To demonstrate the effectiveness of the proposed approach, two different cases have 
been considered as follows: 

Case 1: Optimal Power Flow problem with minimization of fuel cost as objective  
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Case 2: Multi objective optimal Power flow for security enhancement. 

Case 1: Base case OPF 

 In this case, fuel cost objective is optimized in order to explore the extreme points of 
the trade-off surface and evaluate the diversity characteristics of the pareto optimal 
solutions obtained by the proposed approach.  Generator real power output and voltage 
magnitude of generator buses are taken as the control variables.  

The initial population was randomly generated between the variable’s lower and upper 
limits. Tournament selection was applied to select the members of the new population. Two 
point crossover and uniform mutation were applied on the selected individuals. The 
performance of GA generally depends on the GA parameters used, in particular, the 
crossover and mutation probabilities, Pc and Pm, respectively. The performance of GA for 
various crossover and mutation probabilities in the range of 0.6–1.0 and 0.001–0.1 
respectively was therefore evaluated.  The best result of the GA was obtained with the 
following control parameters: 

• No of generations  : 70 

•  Population size  : 45 

•  Crossover probability : 0.9 

•  Mutation probability : 0.01 

 

 

 
Fig.3. IEEE-30 bus test system 

 

Fig. 4 shows the variation of fitness during the GA run for the best case. After 70 
generation it was found that all the individuals have reached almost the same fitness value. 
This shows that GA has reached the optimal solution. 
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Fig.4. Convergence of the GA-OPF algorithm for IEEE 30-bus test system 

 

The minimum cost obtained by the GA based approach along with the optimal control 
variables are given in table 1. Corresponding to this control variable it is found that there is 
no limit violation in any of the state variables in the base case. 

 

Table 1: Result of Single Objective OPF Algorithm 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control  
Variables 

Variable 
Setting 

P1 
P2 
P5 
P8 
P11 
P13 
V1 
V2 
V5 
V8 
V11 
V13 
 

173.6 
50.2 
21.8 
23.8 
10.8 
12.3 
1.0145 
1.0068 
0.9698 
0.9688 
0.9670 
0.9802 

Generation 
 Cost 

801.7165 ($/hr) 
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Table 2 gives a comparison between the proposed approach and the other algorithms 
reported in the literature in the case of fuel cost minimization as objective. From this 
comparison, it is evident that the proposed approach has produced the solution with lowest 
fuel cost. This shows the effectiveness of the proposed GA approach in solving the OPF 
problem.  

Table 2: Comparison of Fuel cost 

 
Case 2: Multi-objective OPF 

Contingency analysis was carried out on the system to identify the severe 
contingencies. The list of severe contingencies along with their severity index value is 
given in table 3. From this table, it is found that line outage 1-2 is the most severe 
contingency in the system.  

Table 3: Line Outage Ranking Using Severity Index 
 

Outage 
line No. 

Over 
loaded 

lines 

Line 
flow 

(MVA) 

Line 
flow 

limit 
(MVA) 

Severity 
Index 

(SI) 

Rank 

1-2 1-3 
3-4 
4-6 

191.58 
174.13 
103.37 

130 
130 
90 

5.262 1 

1-3 1-2 
2-6 

181.17 
66.482 

130 
65 

3.010 2 

3-4 1-2 
2-6 

178.43 
65.558 

130 
65 

2.9011 3 

2-5 2-6 
5-7 

76.285 
101.08 

65 
70 

1.3777 4 

28-27 22-24 
24-25 

19.062 
17.781 

16 
16 

2.1979 5 

4-6 1-2 
2-6 

132.63 
69.921 

130 
65 

0.6327 6 

  

The GA based algorithm was applied for corrective control under the contingency state 
taking the generator real power and generator bus voltage magnitude as control variables 
and minimum severity index as the objective function. The GA based approach was able to 
alleviate the overload in all cases except for the contingency 1-2. Table 4 shows the control 
variable settings for contingency 1-2. This shows that generation rescheduling alone is not 
sufficient to alleviate the overload under some contingency cases.   

 

 

Method Minimum Cost 
Gradient approach [5] 802.43$/hr 
Hybrid evolutionary programming [9] 802.62$/hr 
Improved Evolutionary programming [10] 802.465 $/hr 
Proposed Method 801.7165 $/hr 
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Table 4: Control Variable setting for contingency 1-2 
Line 
outage   P1  P2  P5 P8 P11 P13 V1 V2 V5 V8 V11 V13 

  SI    
value 

1-2 145.49 57.36 24.42 34.82 18.03 17.2 1.035 0.998 0.959 0.967 1.02 0.9500 2.473 

 

Next, TCSC was included in addition to generation rescheduling to alleviate the 
overload. The LOS indices are calculated using equation (4) for each branch of the studied 
system for the severe contingencies. The branches which posses high values of LOS for the 
severe contingency are listed in table 5.  

 

Table 5: LOS Values for IEEE 30 bus test system 

 

The TCSCs are placed in these three lines. Generator active power, generator bus bar 
voltages and the reactance values of TCSCs are taken as the control variables and the 
problem was handled as a multi-objective optimization problem with TCSC installation 
cost and control variable adjustment  as objectives to be minimized simultaneously with the 
NSGA.  

In all simulation, the following parameters were used  

• Number of generation      =90 

• Population size               = 40 

• Cross over probability        =0.9 

• Mutation probability          =0.01 

• Distribution index for cross over     =10 

• Distribution index formulation     =20 

The diversity of the pareto optimal set over the trade off optimal set over the trade off 
surface is shown in Fig. 5.  

It is worth mentioning that the proposed approach produces 25 pareto optimal solutions 
in a single run that have satisfactory diversity characteristics and span over the entire pareto 
optimal front. Out of these two non-dominated solutions which are the extreme points of 
Fig. 5 that represent the best installation cost and best control variable adjustment are given 
in tables 6 and 7. In both cases the value of SI is zero, which shows that the proposed 
approach is able to enhance the security of the system. 

 

 

 

S.No Branches  LOS value  Rank 
1 
2 
3 

2-4 
2-5 
2-6 

0.4770 
0.3421 
0.1643 

1 
2 
3 
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Table 6: Minimum Installation cost solution 

 

 

Table 7: Minimum control variable adjustment solution 

 

 

 

 
Fig.5. Pareto-optimal front of the MOGA problem 

 

 

 

P1,P2,P5,P8,P11,P13 124.73810 45.0758 32.122 34.5764 19.8657 
29.1128 

V1,V2,V5,V8,V11,V13 0.9661, 0.9987, 0.9590, 0.9688, 1.0266, 0.9560 
TCSC settings  0.4677, -0.1129, 0.3387 
Installation cost  (US$/KVAR) 1.25*107 
Control variable adjustment  5.5369 

P1,P2,P5,P8,P11,P13 134.7507, 53.9003, 34.7752, 24.1251, 21.3001, 
27.8201 

V1,V2,V5,V8,V11,V13 0.9935, 0.9865,0.9743, 0.9813, 1.0074,1.0009 
TCSC settings  -0.1452, 0.3387, -0.2419 
Installation cost  (US$/KVAR) 5.712*107 
Control variable adjustment  3.098 
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9. Conclusion 
In this paper, the multi-objective optimal power flow problem has been solved using non 
dominated sorting genetic algorithm. The present paper makes use of recent advances in 
multi-objective evolutionary algorithms to develop a method for the optimal allocation of 
FACTS in to power systems. It has considered as optimization criteria, the minimization of 
control variable adjustments and installation cost of TCSCs. The algorithm has been tested 
on the standard IEEE-30 bus system .The result shows that the proposed algorithm is 
applicable and effective in the solution of OPF problems that consider nonlinear 
characteristics of power system with different objective functions. It is shown that TCSCs 
can enhance the power system security through their optimal allocation. Implementation of 
the proposed Multi-objective GA has performed well when it was used to characterize POF 
of the multi-objective optimal power flow problem. NSGA can generate an efficiently high 
quality solution with more stable convergence characteristics than simple genetic algorithm. 
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