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 For Electric Vehicles (EVs), Weight and losses reduction are important factors not only in reducing the 
energy consumption and cost but also in increasing autonomy. Electric motor system is one of the key parts 
of electric vehicle that is why it is necessary to do some research on EVs performance evaluation by 
reducing its losses and mass. In this paper, we propose an approach based on the combination between an 
Evolutionary Algorithm (EA) and an analytical model of electric motor in order to reduce its losses and 
mass which are the objectives functions in a multiobjective problem (MOP). In this study, the weighted 
sum based approaches to multiobjective optimization is used because it is computationally very efficient. 
Also, Analytical simulation results for the multiobjective optimization are exhibited. 

Keywords:  Multiobjective optimization, Electric vehicle, Permanent Magnet Motor, Losses and 
Mass. 
 

 
1. INTRODUCTION 
Recently, the use of EVs especially in the urban environment offers a quite attractive 
solution against the problem of the atmospheric pollution due to the extended use of 
vehicles with internal combustion motors, also it solves many problems like noise, 
reliability, Low fuel consumption. However, the major shortcomings of an EV are the low 
autonomy and the high cost. Owing to this, Electric motor especially permanent-magnet 
synchronous motor (PMSM) is one of the key  parts of EV that is why by reducing its mass 
and losses, we minimize not only the EV cost and consumption but also we increase 
considerably the autonomy and efficiency of EV [1,2].  

In this paper, we use a systemically approach based on the coupling between the 
parameterized model of losses and mass in electric motor and the optimization program in 
order to optimize parameters influencing EV design. So, minimizing the electric motor 
losses and mass (EMLM) problem, is resolving a multiobjective optimization problem 
(MOP) when the motor losses is the first optimization function and the motor mass is the 
second optimization function. Next, we are fixed for purpose to resolve this multiobjective 
problem by using an Evolutionary Algorithms based on weighted sum method. In first 
section, a studied motor structure is clarified and a formulation of EMLM problem is 
presented. Then, the principle of multiobjective problem is defined and the proposed 
approach is developed. Finally, Analytical simulation results for the optimization are 
exhibited. 

2. FORMULATION OF EMLM PROBLEM  
2.1. Motor structure 

The studied motor is a PMSM which is characterized by a reduced production cost, a strong 
power-to-weight-ratio and a high efficiency [3]. Figure 1 shows the geometry of PMSM 
example investigated in this study. The design is an inset permanent magnet motor 
topology [4], with radial magnetized magnets.  
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This motor has four pairs of poles, six principal teeth. Between two principal teeth an 
inserted tooth is added to improve the wave form of the electromotive force (E.M.F) and to 
reduce the flux leakages [5]. The slots are right and open aiming to facilitate the insertion of 
coils and to reduce the production cost. The concentrated winding is used. Each phase 
winding comprises two opposite diametrically coils [6]. 
 
Figure 1 shows the geometric input required by MAXWELL 2D. 

 

 
Figure 1:  Geometric input required by Maxwell-2D 

2.2. Sizing PMSM  

The analytical stage of dimensioning is primarily based on various data such as: the 
schedule data conditions, the constant characterizing materials, the expert data and the 
motor configuration.  

This last is characterized by a relation ship between the number of teeth and the number of 
poles pairs directly bound to the space percentage occupied by the slots compared to that 
occupied by the inserted tooth.  

After applying our analytical model, we extract the geometrical and electromagnetic motor 
magnitudes. The geometrical sizes are determined from basic electromagnetism laws for a 
maximum flux position [7]. Of course, equations are written for a design approach. For 
example, the height of permanent magnets is found through Ampere law to have a flux 
density fixed in the air-gap.  

On the other hand, the waveforms and magnetic leakage aren't computed by analytical 
calculation but determined by finite element simulations and introduced in the analytical 
computation. 

The representation of the field lines when the motor operates at load is represented on the 
following figure:  
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Figure 2: Field lines distribution at load 

After analytical modeling and validation by finite elements method, we explain the 
optimization problem which consists on minimizing simultaneously the motor losses and 
the motor mass. 

2.3. Objective functions 

The resolution of EMLM problem consists in minimizing two given objectives functions 
which represent the motor mass and the motor losses. [8] gives the detail of modeling.  

- PMSM mass function 

The motor mass function Fm in Kg is represented by the following expression: 

m m c sy st toothi ryF M M M M M M= + + + + +  (1)

Where: 

Mm is the magnets mass defined by:   
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Mc is the copper mass given by the equation:   
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Mst is the stator teeth mass defined by the equation:   
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Msy is the stator yoke mass expressed by the equation: 
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Mry is the rotor yoke mass given by the equation: 
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Mtoothi is the inserted teeth mass defined by : 

st toothi
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(7)

- PMSM losses function 

In the permanent magnet motor, the iron losses are given by the following expression [6]: 
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The mechanical losses are given by the following expression [6]: 
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The copper losses are given by the following expression: 
23c phL R I= n  (10)

The resistance per phase is expressed as follows: 
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The Motor rated current is given by the following expression: 
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n

e

T
I

K
=  (12)

Finally, the motor losses function FL is given by the following equation: 
L i m cF L L L= + +  (13)

 
2.4. Problem constraints 

The different constraints of EMLM problem are established following technological, 
physical and expert considerations. For example: The wheel radius is delimited by the 
space reserved, the air-gap flux density variation beaches are defined starting from the iron 
B-H curve to avoid problem saturation and the current density is an expert data. 
-  The geometrical constraints: 
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-  The Technological constraints: 
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(15)

Where rd is the reduction ratio and Rw is the wheel radius.  

- The magnetic constraint: 

0.89 1.05eT B T≤ ≤  (16)

Where BBe is the air-gap induction. 

- The efficiency constraint: 

Rend >0.94 (17)

Where Rend is the motor efficiency. 

- The physical constraint: 

m dI I≤  (18)

Im is the motor current, and Id is the demagnetization current. 

The optimization problem is summarized as follow: 

Minimizing simultaneously FM and FL with: 

0.94
100 250
150 200
2 8
2 8
0.25 0.35
0.89 1.05

m d end

m

m

d

w

e

I I and R
mm D mm
mm L mm

mm e mm
r
m R m
T B T

≤⎧ ⎫
⎪ ⎪≤ ≤⎪ ⎪
⎪ ⎪≤ ≤
⎪ ⎪

≤ ≤⎪ ⎪
⎨ ⎬≤ ≤⎪ ⎪
⎪ ⎪≤ ≤
⎪ ⎪

≤ ≤⎪ ⎪
⎪ ⎪
⎩ ⎭

;

 (19)

 

3. MULITIOBJECTIVE OPTIMIZATION  
3.1. Principle 

Engineering design often deals with multiple, possibly conflicting, objective functions or 
design criteria. For example, one may want to maximize the performance of a system while 
minimizing its cost. Such design problems are the subject of multiobjective optimization 
and can generally be formulated as follow [9]: 
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where : 
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Nobj: Number of objectives, 

M : Number of equality constraints,  

K: Number of inequality constraints, 

X: Decision vector. 

Any two solutions X1 and X2 can have one of two possibilities: One covers or dominates the 
other or none dominates the other. 

In minimization problem, without loss of generality, a solution X1 dominates X2 if the 
following two conditions are satisfied: 

}{
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Xf is the set of feasible solutions, i.e. }{ 0)x('hand0)x('gXxX f ≤=∈= . 

where: 

( )Tm21 )x(g),.....x(g),x(g)x('g = and ( )Tk21 )x(h),...x(h),x(h)x('h = .  

A decision vector fXx∈  is non-dominated with respect to a set , if: fXA⊂

        /a A a x∈ ≺ (22)∃ 

The set of non-dominated decision vectors is known as the Pareto optimal set, while the 
corresponding set of objectives vectors constitutes the Pareto optimal front. 
 
3.2. Weighted sum method for MOP 

Most practical problems require the simultaneous optimization of multiple objectives. In 
applications of optimization techniques, the solution to such problems is usually computed 
by combining the objectives into a single one according to some utility function. To solve 
the MOP, the weighted sum method is used In case of a two objectives functions in the 
optimization problem where ,F1 and F2 can be weighted using weighting values, w1, and w2 
respectively, so that [10]: 

( ) ( )1 2 1 2 1 1 2 2, ,Minimize F F F F w w w F w F= = +  (23)

We can divide the objective function by a positive number without altering the solution, 
after dividing (24) by w1, w2/w1, can be redefined as w. Then (23) can be written as 
follows: 

( ) 1 2Minimize F w F wF= +  (24)

where . [ [∞= ,0w

Because it is difficult to realize according to the w in total range, objective function is 
reformed for covering the total range. The final objective function is represented by: 

( ) ( ) ( ) ( )1 21F w wF X w F X= + −  (25)

where and x is a set of design variables. [ ]1,0w =
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Using this method, only one Pareto optimal solution can be obtained with one run of the 
optimization algorithm. 

3.3. Proposed approach 

By replacing the motor various losses which is the first optimization function and the motor 
mass which is the second optimization function in (25), we note that this optimization 
function F depend primarily on the wheel radius Rw, the average motor diameter Dm, the 
average motor length Lm, the air-gap flux density BBe, the reducer ratio rd and the air-gap 
thickness e, which are selected as parameters of optimization.  

Consequently, our optimization problem consists on minimizing the EMLM by keeping 
efficiency higher or equal to 0.95 and respecting the following constraints (Table 1), in 
order to obtain the optimal values of optimisation parameters: Rwopt, rdopt, Lmopt, Dmopt, eopt 
and BBeopt. 

The beach of each parameter variation xi ∈ (Rw, rd, Lm, Dm, e, Be) must respect the 
following constraint:  

Ximin≤Xi≤Ximax (26)

The values of the lower limit Ximin and the upper limit Ximax are established following 
technological, physical and expert considerations. 

Table 1: Optimization constraints 

Lower limit Ximin Variables X Upper limit Ximax

100 Dm(mm) 250 
150 Lm(mm) 200 
0.1                Be(T) 1.05 
3 rd 8 
4 e(mm) 8 

0.25 RW(m) 0.35 
 
Figure 3 describes the optimization total process, associating algorithm and criteria in 
evaluation. 
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Motor mass 
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Schedule 
data conditions
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Figure 3: Optimization process 
 

Figure 4 presents the used approach for multiobjective optimization Algorithm execution 
starts by requesting the user to enter critical data, which include design specifications, 
Constants characterizing materials, Motor configuration, Schedule data conditions, 
Analytical model of permanent magnet and electric motor dimensioning, objectives to be 
optimized and constraints. In addition, the optimization routine requires information on 
upper and lower values of optimization parameters, number of objectives and the number of 
generations. 

The evolutionary settings required by the optimization routine include population size, 
initial population, selection method, probability of crossover, crossover method probability 
of mutation, mutation method. 

Execution stops once the termination criterion is satisfied. The program stops execution 
once the termination criterion is satisfied (When optimal solution is obtained ten successive 
times). Optimization results can be saved manually in a text file for further processing. 
These results present the optimized variable values and objective values for each generation 
[11].  

 284 



J. Electrical Systems 4-4 (2008): 277-292 
 

The user, as the decision-maker, has to select a desired result from the result-set (optimal in 
the sense of multiobjective optimization, obtained from execution of figure 4). 

Start 

Enter 
 Design specification, 
 Constants characterizing materials, 
 Motor configuration, 
 Schedule data conditions, 
 Analytical model of permanent magnet 

and electric motor dimensioning, 
 Upper and lower design variable 

domains, 
 Number of objectives, 
 Evolution setting (Crossover and 

Mutation probabilities, number of 
generation, population size...), 

 Termination criteria. 

Generate initial population 

 Evaluate objectives taking account the 
constraints (Weighted sum method) 
 Perform evolutionary computation to 
obtain new populations: 

 Selection,  
 Crossover and mutation 

Termination criterion 
satisfied? 

End 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Multiobjective algorithm for motor losses and mass optimization. 
 

In the following, the multiobjective stochastic design optimization approach is applied to 
the simultaneous minimization of losses and mass in the permanent magnet motor.  

4. SIMULATION AND RESULTS 
The simulation parameters as well as the vehicle components model have been set for an 
EV with the following specifications [12]: 

 Body mass : 1200kg, 

 Rolling resistance coefficient : 130.10-4, 
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 Body aerodynamic drag coefficient : 0.7, 

 Vehicle front area : 1.4m2, 

 Basic speed of the electrical vehicle : 30km/h, 

 Electric motor : 15kW. 

4.1. Mono-objective optimization 

To optimize the two functions, losses and mass in the motor. We use a Real Coded Genetic 
Algorithm (RCGA) with real coding which is a simulated evolution type optimization 
technique and good for finding global optimal solution [13]-[14]- [15]. 

The RCGA was programmed in MATLAB 7.0 and was run on a Pentium IV, 2.0 GHz, 128 
MB RAM machine. The RCGA parameters are given by Table 2.  

Table 2:  RCGA parameters 

Characteristics Types or values 
Type of selection  Tournement 
Type of crossover operator  Arithmetic 
Probability of  crossover 0.95 
Type of mutation operator Uniform 
Probability of  mutation 0.01 
Population size 350 
Generation number 700 
 
Figures 5 and 6 illustrate the evolution of two convergence objectives.  
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Figure 5: The motor mass function 
according the generations number 

Generations number 

Figure 6: The motor losses function 
according the generations number 

Generations number 
 

 
 
 
From figures 5 and 6, we notice that the motor losses function and the motor mass function 
are decreasing according to the generations number and converge toward their minimal 
values. 

Also, we note that the population improvement is very fast on the beginning (total research) 
and becomes increasingly slow as the time pass (local research), consequently the algorithm 
converges for a good choice of the initial populations. 

The motor losses function converges toward the value 313.69W and the motor mass 
function converges towards 37.24 kg. 
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Table 3 shows the results of mono-objective optimization for the motor mass, and the 
motor losses functions obtained under MATLAB simulation. 

Table 3: Results of mono-objective optimization 

Motor losses optimization Motor mass optimization 
100.42 Dm(mm) 245.72
150.51 Lm(mm) 150.28
0.99 BBe(T) 0.99
7.97 e(mm) 7.96

250.70 Rw(mm) 250.33
7.98 rd 7.97

313.69 W 37.24 Kg Optimal value of objective 
function 

 
4.2. Bi-objective optimization 

After having an idea about the optimal values of the two mono-objectives optimizations, we 
use the proposed approach given in figure 3 when the parameters simulations are given by 
Table 4.  

Figure 7 represents the evolution of the objective function given by (25) according the 
generations number, we note that this function reaches its optimum value in the 359 
iterations. 

The optimal Pareto set for a bi-objectives optimization of the motor losses and the motor 
mass functions is shown in figure 8. 

 

F 
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w
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m
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w

) *F
L  
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Figure 7: Evolution of the different objectives which are summed up to a single according 
the generations number. 
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Dm = 195.307mm 
Lm= 150.701mm 
Be= 0.998 T  
e = 7.9105mm 
Rroue= 250.66mm 
rd = 7.939  

Dm = 101.665 mm 
Lm= 150.432 mm 
Be=0.999 T  
e = 7.963 mm 
Rroue=252.957mm 
rd = 7.892   

Losses = 429.022 w
Mass = 39.711 kg 

Dm = 108.024 mm 
Lm= 151 mm 
Be= 0.999 T  
e = 7.942 mm 
Rroue= 251.135 mm 
rd = 7.962   

Intermediate Solution  
 

Losses = 410.178 w 
Mass = 44.459 kg 

Losses = 322.328 w
Mass = 152 kg 

 
Figure 8: Pareto set mass/ losses 

The result is collected from 50 runs of the optimization. From figure 8, we can take the 
optimal values of the objectives function with minimal motor losses and with minimal 
motor mass. This result is given by the following Table: 

Table 4: The optimal solutions 

An  intermediate  solution With minimal motor 
mass 

With minimal motor 
losses  

410.1786 429.022 322.328 Motor losses 
44.459 39.711 152 Motor mass 

108.024 101.665 195.307 Dm
151 150.432 150.701 Lm

0.999 0.999 0.998 BBe
7.9421 7.963 7.9105 e 

251.135 252.957 250.66 Rw

7.962 7.892 7.939 rd

 
Figure 9 and 10 show respectively the evolution of optimization parameters as a function of 
motor losses and the evolution of optimization parameters as a function of motor mass from 
50 runs of the optimization. We note that the obtained values of optimization parameters 
are very near from the different runs in the two optimization functions.  
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Figure 9: Evolution of optimization parameters as a function of the motor losses  Figure 9: Evolution of optimization parameters as a function of the motor losses  

  
Figure 10: Evolution of optimization parameters as a function of the motor mass  Figure 10: Evolution of optimization parameters as a function of the motor mass  
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Figure 11 shows the evolution of optimization parameters as a function of generations 
number in the 50 runs. 
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Figure 11: Evolution of optimization parameters 

Numbers of runs in simulation

5. CONCLUSION 

In this paper, a multiobjective optimization approach based on weighted sum method has 
been presented and applied to the multiobjective losses and mass problem of an electric 
vehicle. 

The problem has been formulated as a multi objectives problem, while taking into account 
the motor losses, and the motor mass as objectives functions. 

The results show that the proposed approach is efficient for solving the EMLM 
multiobjective problem. The non dominated solutions obtained are well distributed and 
have satisfactory diversity characteristics. 

Finally the permanent magnet motor designed around its optimal parameters is an interest 
solution in EV world. 
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6. NOMENCLATURE 

 

P :The number of poles pairs, 
Lm :The motor length, 
Wm :The magnet angular width, 
Dm :The motor diameter, 
E :The air-gap thickness, 
Hm :The magnet height, 
In  :The motor rated current,  
Mva :The volumic mass of magnet,  
Mvc :The volumic mass of copper, 
Mvt :The volumic mass of magnetic sheet, 
Lsp  :The average length of one spire, 
Nsph  :The number of spires per phase, 
Δ :The current density accepTable in coil, 
Htooth  :The principal tooth height, 
tsy  :The stator yoke thickness, 
Hry  :The motor rotor yoke height, 
Wtoothi  :The inserted angular tooth width, 
q :The coefficient quality metal sheets, 
fb :The base frequency of the motor, 
Bsy :The stator yoke flux density, 
Bt :The tooth  flux density , 
Km :The mechanical loss ratio, 
rp :The  loss ratio, generally rp= 2%, 
Rcu(tb) :The resistance per phase at Temperature tb,  
Tem :The electromagnetic torque,  
Ke :The motor electric constant. 
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