
 
Research Unity of Industrial Process Control (UCPI), National Engineering School of Sfax (ENIS), B.P.: W 3038 
Sfax-Tunisia 
Aroui.tarek@yahoo.fr, Yassine.koubaa@enis.rnu.tn, ahmad.tomi@enis.rnu.tn 
 

Copyright © JES 2007 on-line : http://journal.esrgroups.org/jes/ 

 

T. Aroui 

Y. Koubaa 

A. Toumi 

 
 

Regular paper 
 

Application of Feedforward Neural 
Network for Induction Machine Rotor 

Faults Diagnostics using Stator Current 

 

Faults and failures of induction machines can lead to excessive downtimes and generate large 
losses in terms of maintenance and lost revenues. This motivates motor monitoring, incipient fault 
detection and diagnosis. Non-invasive, inexpensive, and reliable fault detection techniques are 
often preferred by many engineers. In this paper, a feedforward neural network based fault 
detection system is developed for performing induction motors rotor faults detection and severity 
evaluation using stator current. From the motor current spectrum analysis and the broken rotor bar 
specific frequency components knowledge, the rotor fault signature is extracted and monitored by 
neural network for fault detection and classification. The proposed methodology has been 
experimentally tested on a 5.5Kw/3000rpm induction motor. The obtained results provide a 
satisfactory level of accuracy. 
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1. INTRODUCTION  

Induction motors play a pivotal role in industry and there is a strong demand for their 
reliable and safe operation, and the motor can be exposed to different hostile environments, 
misoperations, and manufacturing defects. Internal motor faults ( e.g., short circuit of motor 
leads, interturn short circuits, ground faults, bearing and gearbox failures, broken rotor bar 
and cracked rotor end-rings), as well as external motor faults (e.g., phase failure, 
asymmetry of main supply and mechanical overload), are expected to happen sooner or 
later[1].  Furthermore, the wide variety of environments and conditions that the motors are 
exposed to can age the motor and make it subject to incipient faults. These incipient faults, 
or gradual deterioration, can lead to motor failure if left undetected. 

The major faults of electrical machines can broadly be classified according to the main 
components of a machine:  stator related faults, rotor related faults, bearing related faults 
and other faults [2]. 

Early fault detection allows preventative maintenance to be scheduled for machines 
during scheduled downtime and prevents an extended period of downtime caused by 
extensive motor failure, improving the overall availability of the motor driven system. With 
proper system monitoring and fault detection schemes, the costs of maintaining the motors 
can be greatly reduced, while the availability of these machines can be significantly 
improved. Many engineers and researchers have focused their attention on incipient fault 
detection and preventive maintenance in recent years. There are invasive and noninvasive 
methods for machine fault detection, they can be described as [3,4]: 

 
 



 

 

 

 Electromagnetic field monitoring, search coils, coils wound around motor shafts (axial 
flux related detection), 

 Temperature measurements, 
 Infrared recognition, 
 Radio frequency (RF) emissions monitoring,  
 Noise and vibration monitoring, 
 Chemical analysis, 
 Acoustic noise measurements, 
 Motor current signature analysis (MCSA). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Types of induction machine faults 
 

The noninvasive methods are more preferable than the invasive methods because they 
are based on easily accessible and inexpensive measurements to diagnose the machine 
conditions without disintegrating the machine structure [7]. 

Recently, artificial intelligence (AI) techniques have been proposed for the noninvasive 
machine fault detection [6, 7]. They have several advantages over the traditional model-
based techniques [3, 4]. They require no detailed analysis of the different kinds of faults or 
modeling of the system. These AI-based techniques include expert systems, neural network 
and fuzzy logic. 

This paper deals with diagnosis problems of the induction motors in the case of rotor 
faults. A supervised neural network is used for fault and fault severity classification. The 
supervised neural network proposed is a multi-layer feedforward neural network. Neural 
networks are trained and tested using measurement data of stator current spectra. Tests 
were performed at different operating load conditions. The obtained results indicate that the 
proposed neural network approach is promising for not only detecting machine faults, but 
also estimating the severity of the faults via monitoring a single-phase stator current signal. 

2.   IMPLEMENTING ARTIFICIAL NEURAL NETWORKS  

    Fig.2 describes the main steps of a diagnostic procedure, based on the single-phase stator 
current signal:  
 

 First, the signal pre-processing converts the time domain stator current signal into a 
usable frequency domain spectrum. Then a signature extraction determines which 
frequencies should be monitored by the neural network, 

 



 

 

 

 Finally, the neural network is used to automatically diagnose and discern between 
Healthy and faulty induction motor. 

 
2.1. Signal pre-processing  
 
    The motor stator phase line current is the signal used as a basis for the condition 
monitoring of the rotor faults. The preprocessor converts the sampled signal to the 
frequency domain using an FFT algorithm. The spectrum generated by this transformation 
includes only the magnitude information about each frequency component. Signal noise 
present in the calculated spectrum is reduced by a predetermined number of generated 
spectra. This can be accomplished by using spectra calculated from multiple sample sets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Structure of the Artificial Neural Network rotor fault diagnosis system 
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2.1.1.Sampled signal 
 
    The sampled input signal from a hall effect sensor is collected at an equal sampling time 
which can be expressed as x(n), where n=0,1,2,…,N-1 and N is the number of samples. 
 
2.1.2.windowing function 
 
    A window is a time-domain weighting function applied to the input signal. A window is 
a filter used to remove signals that are not periodic within the input time record. This makes 
the input time record appear to be a periodic signal, usually by forcing the amplitude to zero 
at both ends of the time record. Selecting the proper data window (such as Hanning, 
Hamming, Kaiser, Blackmann or Bartlett. We can see the difference between these N-point 
windows functions in Fig.3) can prevent leakage of energy across the frequency spectrum 
caused by transforming signals that are not periodic within the time record. The windowing 
function multiply the sampled signal by a proper data window w(n). The windowing data is 
expressed as 
 

wx(n) = w(n).x(n)                                            (1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Windowing functions 
 
 

 
2.1.3.Fast Fourier Transform(FFT) 
 
    Within each sample sets, applying FFT (Fast Fourier Transform) can convert time 
domain signals wx(n) into the frequency domain[8,9]. 
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where f is the discrete frequency. 
 
The Power spectral density (PSD) can be estimated by the following expression [8,9]: 
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( ) ( ) ( )PSD f WX f WX f=                                   (3) 

 
where ( )WX f  denotes the complex conjugate. 
 
2.1.4. Ensemble averaging 
 
    The ability to average a series of measurements is useful to discriminate between noise 
and components that are actually part of the signal. This ensemble-averaging technique is 
very effective for determining the frequency content of a signal buried in a random noise. 
The PSD from predetermined number (K) of generated spectra can then be averaged to give 
the following estimates 
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2.2. Extraction of signatures: 
 
    The problem concerning the extraction of the signature is now considered. The extraction 
is the process used to pick up signals of importance and reduce the large amount of spectral 
information. The rotor faults in induction motors can be detected by monitoring any 
abnormality of the motor current spectrum amplitudes at several certain frequency 
components. 
 
    These frequency components are located around the main frequency line and are 
determined according the number of poles and mechanical speed of the motor. However, 
there are other effects that may obscure the detection of the broken rotor bar fault or cause 
false alarms. For example, torque oscillation that can produce stator currents with the 
frequency values the same as the monitored frequencies [10]. 
 
2.2.1. Motor current spectral components for broken rotor bar  
 
    Kliman [11], Thomson [12], Filippetti [1] and nandy [2] have used the motor current 
signature analysis (MCSA) methods to detect broken bar faults by investigating the 
sideband components, fb, around the supplied current fundamental frequency: 
 
 

(1 2 )b sf s f= ±                                                 (5) 
where s is the slip and fs is the supply frequency. 
 
    While the lower sideband is specifically due to broken bar, the upper sideband is due to 
consequent speed oscillation. In fact, some works [1,9] show that broken bars actually give 
rise to a sequence of such sidebands given by: 
 

(1 2 )bc sf ks f= ±  ,k = 1, 2, 3, ……                       (6) 
 
    Fig.4 and Fig.5 reports the experimental stator currents spectrum affected by the 
sideband components at frequencies (1±2s)fs  and (1±4s)fs respectively in case of one and  
two broken bars. 
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    From Fig.4 and Fig.5, it is important to note that, as the fault progresses, its characteristic 
spectral components continue to increase over time. Therefore, the correlation between the 
amplitude of these components and the fault extent is the issue of the diagnostic system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. Experimental plot of the stator current spectrum around fundamental 
 with one broken bar 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. Experimental plot of the stator current spectrum around fundamental 
 with two broken bars 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6. Experimental plot of the stator current spectrum around 5th harmonic 
 with two broken bars 
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    There are other spectral components that can be observed in the stator line current due to 
broken rotor bar fault. The equation describing these frequency components is given by 
Didier [9]: 

( ) ( )1 1 2hbc s
kf s s f
p

η
⎡ ⎤⎛ ⎞

= − ± +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

                      (7) 

 

where fhbc is the detectable broken bar frequencies; 
k
p

=3,5,7,9,11,13,…….. and η=0,1,2,3,. 

 
    Monitoring the amplitude of these components can be used to discriminate between rotor 
anomalies and oscillating load torque. Fig.6 shows the experimental plot of the stator 
currents spectrum affected by these components around 5th harmonic with two broken bars. 
 
2.3. Artificial Neural Networks (ANN) 
 
    Artificial neural networks (ANN) are used to recognize and classify complex fault 
patterns without much knowledge about the system they deal with. They are designed to 
mimic the human nervous system using massively parallel nets composed of many 
computational elements connected by links with variable weights. Of all the ANNs, the 
multi-layer feedforward artificial neural network, trained using the back-propagation 
algorithm, is the most commonly and flexibly used [3]. Its typical architecture, which 
contains the input layer, a number of hidden layers and the output layer, is shown in Fig.7. 
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Fig.7. A multi-layer feedforward artificial neural network architecture 
 
    Initially, an input pattern is applied to the input layer. Then signals propagate forward, 
level by level, through the hidden layers and the output layer produces the network output. 
Each neuron in a layer (except the ones in the input layer) sums up their input value with 
interconnection to its associated weight and corresponding bias to form its own scalar 
output. The bias is added to shift the sum relative to the origin, and this quantity passes 
through a non-linear activation function, providing an output value.  



 

 

 

We define the input vector to the network X=[x1,x2,…,xn]T and output vector 
Y=[y1,y2,…,ym]T  where n is the number of input layer and m is the number of output layer 
neurons. 
Each layer is represented by l, i.e., input layer (l=0), hidden layers (l=1,2,3…L-1), and 
output layer (l=L) and each neuron in the hidden and output layer receives signals 
v=[v1,v2,…,vk]T from the neurons of the previous layer, scaled by the weights 
wj=[wj1,wj2,…,wjk]T. The activity level of the jth neuron in layer l is obtained as [8]: 
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where oj is the activity level (output) of the jth neuron, Netj is the input of the jth neuron, fj 
is the activation function of the jth neuron, wji is the connection weight from the ith neuron 
to the jth neuron, vj is the activity level of the ith neuron in the prior layer and bj is the bias 
term of the jth neuron. 
 
    The active function defines the output of a neuron in terms of the activity level at its 
level. There are three basic types of activation functions: threshold, piece-linear and 
sigmoid[3]. The sigmoid function is by far the most common activation function. In this 
paper the tan-sigmoid transfer function is used, which generates outputs between -1 and +1. 
Its definition is expressed in equation (9): 
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    The backpropagation algorithm is used to train the network [3]. The connection weights 
are iteratively adjusted so that the error between the network output and the desired output 
(target) for a given reference input is minimized. The error goal is expressed as the sum of 
the squared error (SSE), calculated as follows: 
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where  tk represents the desired output of the kth neuron in the output layer. 
 
    Learning continues iteratively until the sum of the squared error is below a certain goal. 
The incremental change of weight from the ith neuron to the jth is computed by[3,14]: 
 

( 1) ( )ji j i jiw t o w tηδ αΔ + = + Δ                              (11) 
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where Δwji(t) is the incremental change in the weight wij at time t, tk is the desired output of 
the kth neuron in the output layer, η is the learning rate and α is the momentum. 
The momentum term ( ( )jiw tα Δ ), included in the weight update equation to try to 
avoid a local minimum [3]. 
 
Equation (12) holds for the kth neuron in the output layer and (13) holds for the qth neuron 
in the hidden layer. 
 
2.4. Data normalization 
 
    In order to improve the neural network performance, the data must be well-processed and 
properly-scaled before inputting them to ANN. The normalization process was required to 
restrict the range of the patterns for input into the neural networks. In this study, the inputs 
to the neural network are normalized between [-1,+1] by equation(14): 
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where maxx is the maximum magnitude of the input vector  and minx is the minimum 
magnitude of the input vector  
 
3. EXPERIMENT SETUP AND MOTOR DATA SPECIFICATIONS 
 
    The characteristics of the 3 phase induction motor used in our experiment are listed in 
Table1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.8. Block diagram of the experimental neural network based detection system 
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Table 1.  Induction motor Characteristics used in the experiment 
 

Description Value 
Power 5.5 kW 

Input Voltage 220/380 V 
Full load current 20.6/11.9A 
Supply frequency 50 Hz 
Number of poles 2 

Number of rotor slots 28 
Number of stator slots 36 

Full load speed 2875 rpm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9. View of the experimental setup 

 
    The needed load of the induction motor was established by connecting the test motor to 
an eddy current brake via a flexible coupling, as seen in Fig.9. In order to allow tests to be 
performed at different load levels, the brake DC supply current is controllable. 
A current Hall Effect sensor was placed in one of the line current cables. The stator current 
was sampled with a 4 KHz sampling rate and interfaced to a Pentium PC by an ARCOM 
acquisition board. The overall data collection scheme is depicted in Fig.8.  
The motor was tested with the healthy rotor and with two faulty rotors that had respectively 
one and two broken rotor bar. The bars were broken by drilling holes through them. 
 
3.1. Machine slip computation 
 
    The current spectrum components depend on the machine speed or slip. Therefore to 
avoid the need to measure the machine speed using conventional transducers (observing 
consequently, the non invasive criteria).  
 
    To solve this problem, we choose to calculate the rotor slot harmonics given by the 
following equation: 
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where P is the  pole pair number,  fs  is the supply frequency and Nr is the rotor slot number. 
 

Table 2. Number of hidden neurons and accuracy of training and testing data 
 at different conditions 

 Correct detection 

Number of hidden neurons 5 6 7 8 9 10 11 

Normal 40 40 40 40 40 40 40 

Rotor with one 
broken bar 39 39 39 40 40 40 40 training data 

Rotor with two 
broken bars 40 40 40 40 40 40 40 

Accuracy 99.16% 99.16% 99.16% 100% 100% 100% 100% 

Normal 19 19 19 19 19 19 19 

Rotor with one 
broken bar 18 19 18 18 18 18 19 testing data 

Rotor with two 
broken bars 20 18 20 19 20 20 20 

Accuracy 95% 93.33% 95% 93.33% 95% 95% 96.66% 

 
 
    These components are always present in the stator current spectrum with healthy and 
faulty rotor. Fig.10 shows these components for full load condition of the motor with two 
broken rotor bar fault. However, the analyze of this spectrum reports that the detection of 
the first slot harmonic line at frequency rf

+ is easy and represents the component with the 
maximum amplitude in this bandwidth. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.10. Experimental plot of the stator current spectrum  
in the frequency band [1200 Hz – 1450 Hz] 
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4. RESULTS USING THE NEURAL NETWORK 
 
    Experimental data were collected for each operating condition of the motor (healthy, 
rotor with one and two broken bar) under four different load conditions. The load 
conditions of the motor are 25%, 50%, 75% and full load respectivelly. These load 
condition percentages are determined according to the motor nameplate information given 
in Table1. First all the sampled time domain signal was converted to the frequency domain 
using PSD estimation. After computation by 8192-point FFT and extraction of signatures, 
the 14 most important components were extracted separately. A total set of 180 sets of 
current were collected and two thirds of them were used to train the neural networks. The 
rest of the data set was used to test the network’s performance.  
 
    The Neural Network Toolbox of MATLAB was employed to train the artificial neural 
networks for this investigation. A three layered feed-forward neural network with 
backpropagation algorithm was used to perform the desired analysis. The network topology 
is as follows: 
 
 The FFNN input layer is constituted by a set of 14 neurons in order to consider 10 
spectrum components centred around the fundamental, 2 spectrum components around 
5th harmonic and 2 spectrum components around 7th harmonic. 

We have considered the fundamental harmonic given by equation (7) when η=0 and 
k
p

 

respectively equal to 5 and 7. 
 

 A proper selection on the number of hidden neurons has significant effect on the network 
performance. In order to demonstrate the performance of the FFNN, the number of 
hidden neurons is varied to find the optimal design. The different numbers of hidden 
neurons applied in the verification are 5, 6, 7, 8, 9, 10 and 11.  

 
 The output layer of the neural network has three neurons representing different states of 
the machine. Since the FFNN neural network belongs to supervised learning, it needs a 
teacher to lead it in order to achieve the determined goal. The expect target vectors were 
defined as three different pattern : 
T1=[1 -1 -1]T , T2=[-1 1 -1]T , T3=[-1 -1 1]T for healthy, faulty with one broken bar and 
faulty with two broken bar respectively. 1 is set as the correct class and -1 for all the 
other classes.  

    After successful training, the network was used to distinguish between the rotor states. 
The test data was unseen by the neural network. Table 2 shows the performance of the 
network motor rotor fault diagnosis. Optimum results were obtained with 11 hidden 
neurons. A learning rate of 0.01 and momentum of 0.95 was selected for all cases based on 
the experience. Table 2 shows that the neural network was able to discern between 
“healthy” and “faulty” induction motor. We define the accuracy as the number of correctly 
diagnostic data over that of total data. 

 
5. CONCLUSION 
 
    In this paper, feed-forward neural network with backpropagation algorithm has been 
used to perform incipient rotor bar fault detection based on the extracted information 
features. The proposed neural network is not only able to automatically identify rotor status, 
it is also designed to determine the extent of faults. This is very useful for early fault 



 

 

 

detection and preventive maintenance. The proposed methodology has been tested on a 
5.5Kw/3000rpm squirrel-cage induction motor. Experimental tests have led to results with a 
satisfactory level of accuracy greater than 96%. 
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