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This paper foregrounds fault tolerant robust control of uncertain dynamic linear systems in the 
state space representation. In fact, the industrial systems are more and more complex and the 
diagnosis process becomes indispensable to guarantee their surety of functioning and availability, 
that’s why a fault tolerant control law is imperative to achieve the diagnosis. In this paper, we 
address the problem of state feedback 2 /H H∞  mixed with regional pole placement for linear 
continuous uncertain system. Sufficient conditions for feasibility are derived for a general class of 
convex regions of the complex plan. The conditions are presented as a collection of linear matrix 
inequalities ( )'LMI s . The efficiency and performance of this approach are then tested taking 
into consideration the robust control of a three- phase induction motor drive with the fluctuation of 
its parameters during the functioning. 

Keywords: induction motor, multi-objective control, 2 /H H∞  guaranteed, pole assignment, 
tolerant control, state feedback, LMI approach. 

1. Introduction 

The aim of the fault tolerant control is to accommodate automatically the fault effects 
bearing the safeguarding of both the system stability and nominal performances; therefore, 
avoiding the immediate halt of the system and allowing its functioning within the 
degradation mode. The control design often involves tradeoffs among conflicting 
objectives. The controller is frequently required to satisfy simultaneously different 
performance and robustness objectives which are imposed on different channels of the 
locked loop plant. Some discussions about multi-objective control first appeared in [1]. So 
far there have not been any exact solution or methods using various approximations to find 
upper and lower bounds. 

In particular, the mixed 2 /H H∞ problem has received many attentions. State space 
feedback is well thought-out in [2]. Output feedback with some structural constraints is 
derived in [3]. Whereas a more general case is considered in [4] using convex infinite 
dimensional optimization. In this study, the first performance measure considered is 

2 /H H∞ with closed loop pole clustering constraints. In the state feedback case, a 
systematic LMI approach to mixed 2 /H H∞  synthesis with pole placement in LMI  
regions is presented. This paper is organized as the following: 
Section I introduces the robust performance (pole placement, 2H  or H∞). Section II 
presents the LMI formulation of 2H ,H∞ and pole placement. Section III points up the 
implementation of mixed 2 /H H∞ synthesis on a three- phase induction motor. As a final 
point, we come up by some remarks. 
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2. Robust performance 

The control structure is depicted by Figure 1. The plan ( )P s is given by LTI  system: 
 
 
 
 
 
 
 
 
 
 

Figure 1: State feedback control 

As: 
( )P s : Transfer function of the plan,  
w : Disturbance, 
Z : Controlled output,  
x : State vector  
And u  : Control vector. 

In this paper, the performance measure considered is 2 /H H∞  with closed-loop pole 
clustering constraints.  The used plan is uncertain linear time, invariant ( )LTI ∞ system 
described as the following [7]: 

1 2

1 11 12

2 2 22

        

            

x Ax B w B u

z C x D w D u

z C x D u
∞

⎧⎪ = + +⎪⎪⎪⎪ = + +⎨⎪⎪⎪ = +⎪⎪⎩

�

                                                                                           (1) 

Denoting by ( )T s∞ and ( )2T s the closed loop transfer functions from w  to Z∞  and 2Z , 

respectively, our goal is to design a state feedback law   u kx= such that: 
1 Maintains the RMS  gain (H∞ norm) of T∞  below some prescribed 

value 0 0γ ; . 
2 Keeps the 2H  norm of T2 ( cosLQG t ) below some prescribed value 0 0ν > . 
3 Minimizes an 2 /H H∞ trade off criterion of the form 

2 2
2 2

T Tα β∞ ∞ +                                                                                                             (2) 
 

(1) places the closed loop poles in a prescribed region D  of the open left half 
plane. 

2.1. Mixed 2 /H H∞ performance 

            
The norm 2H of the transfer matrix between a perturbation w  and a controlled output 

Z  is obtained by [8]: 
 

( ) ( )2 *
2

1 .
2wz wz wzP trace P jw P jw dw
π

+∞

−∞
⎡ ⎤= ⎢ ⎥⎣ ⎦∫                                   (3) 

 

( )sP  
 

K  

x  u  

w  ∞Z

2Z 
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And the H∞  norm is given by [5]: 
 

( ) ( )( )( )

( ) ( )( )( )
1
2

sup sup

sup sup .

i

T
i

P s P jw

P jw P jw

σ

λ

∞ =

= −
                                                                 (4) 

Where ( )iσ denotes the thei  singular value and ( )iλ  is the thei  proper value. In its 
abstract “standard” formulation, the H∞  control problem is one of disturbance rejection. 
Specifically, it consists of minimizing the closed loop gain from w  to Z∞  in the control 

loop of Figure 1. This can be interpreted as minimizing the effect of the worst case 
disturbance w  on the output 2Z . The encountered concern is to determine the state 
feedback ( )K s  such that 0γ > and ( ) ( )( ),F P s K s γ

∞
< , in order to settle on γ  as 

small as possible. 
 
2.2. Pole placement in LMI  regions 

The concept of LMI  region [9] is useful to formulate pole placement objectives in 
LMI  terms. LMI  regions are convex subsets D  of the complex plane characterized by 

{ }: 0TD z C L Mz M z= ∈ + + <                                                                                 (5) 

Where M  and TL L= are fixed real matrices. The matrix-valued function: 
( ) : . T

Df z L M z M z= + +                                                 (6) 
It is called the characteristic function of the regionD . The class of LMI  regions is fairly 
general since its closure is the set of convex regions symmetric with respect to the real axis. 
More practically, LMI  regions include relevant regions such as sectors, disks, conics, 
strips, etc., as well as any intersection of the above. Another interesting region for control 
purposes is the set ( ), ,S rα θ of complex number x jy+ such that: 

2 2 20, , tan yx x y r xα θ− + −≺ ≺ ≺ ≺  
Strength of LMI  regions is the availability of a "Lyapunov’s theory" for such regions. 
Specifically, if { }

1 ,ij i j m
λ

≤ ≤
and { }

1 ,ij i j m
μ

≤ ≤
denote the entries of the matrices L  andM , a 

matrix A  has all its eigenvalues in D  if and only if there exists a positive definite matrix 
P  such that [9] 

1 ,
0T

ij ij i j m
P PAλ μ

≤ ≤
⎡ ⎤+⎣ ⎦ ≺                                (7) 

 
Through the notation 

11 1

1 ,

1

:
i

ij i j m

m mm

S S

S

S S
≤ ≤

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"

# % #

"

                                    (8) 

Note that this condition is an LMI in P and that the classical Lyapunov’s theory corresponds 
to the special case 

( )Df z z z= +                                                                        (9) 



J. Electrical Systems 3-3 (2007): 162-175 
 

 165 

3. LMI formulation 

Given a state space realizations of the plan P  in the form (1), the closed loop system is set 
in state space form by: 
 

( )
( )
( )

2 1

1 12 11

2 2 22

x A B K x B w

z C D K x D w

z C D K u

∞

⎧⎪ = + +⎪⎪⎪⎪ = + +⎨⎪⎪⎪ = +⎪⎪⎩

�

                                                          (10) 

 
The specifications and objectives in this work are 2H  and H∞  performance with pole 
placement. Taken separately, our three design objectives have the following LMI  
formulation [5]: 

1 H∞  performance: the closed loop RMS  gain from w  to Z∞  does not  exceed 

γ  if and only if there exists a symmetric matrix X∞  such as : 

2 2 1 1 12

1 11

2
1 12 11

( ) ( ) ( )

0

( )

                                                                                           0

T T

T T

A B K X X A B K B X C D K

B I D

C D K X D I

X

γ

∞ ∞ ∞

∞

∞

⎛ ⎞+ + + + ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ − <⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟+ −⎜ ⎟⎝ ⎠

>

      (11) 

2 2H  performance: the closed loop 2H  norm of 2T  does not exceed ν  if there 
exist two symmetric matrices 2X  and Q  such that 

2 2 2 2 1

1

2 22 2

2 2 22 2

2

( ) ( )
0

( )
0

( )

                                              race(Q)

T

T

T

A B K X X A B K B

B I

Q C D K X

X C D K X

T ν

⎛ ⎞+ + + ⎟⎜ ⎟⎜ ⎟<⎜ ⎟⎜ ⎟− ⎟⎜⎝ ⎠

⎛ ⎞+ ⎟⎜ ⎟⎜ >⎟⎜ ⎟⎜ ⎟+ ⎟⎜⎝ ⎠

<

                                          (12) 

 Pole placement: the closed loop poles lie in the LMI  region  
{ }: 0TD z C L Mz M z= ∈ + + <                                                      (13) 

Where  
                                      

1 , 1 ,
                   T

ij iji j m i j m
L L Mλ μ

≤ ≤ ≤ ≤
⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦              (14) 

If and only if there exists a symmetric matrix polX  satisfying: 

2 2 1 ,

pol

( ) ( ) 0

                                                              X 0

T
ij pol ij pol ij pol i j m
X A B K X X A B Kλ μ μ

≤ ≤
⎡ ⎤+ + + + <⎣ ⎦

>

                (15) 

These three sets of conditions are added up to no convex optimization problem with 
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variablesQ , K , X∞ , 2X  and polX . For tractability in the LMI  framework, we seek a 
single Lyapunov matrix: 
 

2: polX X X X∞= = =                                                                                                    (16) 
That enforces all the three objectives. With the change of variable :Y KX= , this leads to 
the following suboptimal LMI formulation of our multi objective state feedback synthesis 
problem [2, 9, 10]: 
 
Minimize  ( )2 trace Qαγ β+   
                        OverY , XQ  and 2γ    satisfying 

2 2 1 1 12

1 11

2
1 12 11

0

T T T T T T

T T

AX XA BY Y B B XC Y D

B I D

C X D Y D Iγ

⎛ ⎞+ + + + ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ − <⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟+ −⎜ ⎟⎝ ⎠

                       (17) 

2 22

2 22

0T T T

Q C X D Y

XC Y D X

⎛ ⎞+ ⎟⎜ ⎟⎜ >⎟⎜ ⎟⎜ + ⎟⎟⎜⎝ ⎠
                              (18) 

 
( ) ( )2 2 1 ,

0T T T
ij ij ij i j m

AX BY XA Y Bλ μ μ
≤ ≤

⎡ ⎤+ + + + <⎢ ⎥⎣ ⎦                                                (19) 

( ) 2
0Trace Q ν<                                                                        (20) 

 
2 2

0γ γ<                                                                                                                              (21) 
Denoting the optimal solution by ( *X , *Y , *Q  , *γ ), the corresponding state feedback gain 
is given by  
 

( ) 1* * *K Y X
−

                                                                                                                     (22) 

4. Illustrative example 

1st case: Certain  system 

The use of this multi-objective control is illustrated on the three phase induction motor [6]. 
The state space description of this system is: 
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( ) ( )2 2

1 1 0

1 1 0
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r s r r
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s
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s
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M
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σ

⎞⎟⎟⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎛ ⎞⎟⎜ ⎟⎜⎟⎜ ⎟⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎟⎜⎟⎜ ⎟⎜ +⎟⎜ ⎟⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎟⎜⎟⎜ ⎟⎜ ⎟⎟⎜ ⎝ ⎠⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎠
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎜⎜⎜⎜⎜−⎜⎜⎜⎜⎜⎜⎜ −⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎠

1

*
ds

qs

npT

ν
ν

⎛ ⎞⎟⎟ ⎟⎜⎟ ⎟⎜⎟ ⎟⎜⎟ ⎟⎜⎟ ⎟⎜⎟ ⎟⎜⎟ ⎟⎟ ⎟⎜⎟ ⎟⎜⎟ ⎟−⎜ ⎟⎜⎟ ⎝ ⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟           (23) 

 
In this study, we highlight the three phase induction motor drive and describe its model in 
synchronous frame. The control has previously been realized through its disturbances. In 
fact, the system is unsteady in an opened loop. Many poles have some real parts which are 
positive. 
The system parameters are: 
 

0.1008 4.0148 0.0815 3.8386 0

4.0148 0.1008 3.8689 0.0815 0

0.0964 3.8340 0.0839 4.3218 01.0 003 *
3.8340 0.0964 3.6938 0.0839 0

0.3922 0 0 0 0.0002

A e

⎡− ⎤
⎢ ⎥
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− −⎢ ⎥= + ⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

 

1 1 1 1 1 0
T

B ⎡ ⎤= ⎢ ⎥⎣ ⎦ ;    2

84 0 0

0 84 0

80 0 0

0 80 0

0 0 90

B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

1 0 0 0 0 1C ⎡ ⎤= ⎢ ⎥⎣ ⎦  
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2

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 

 
11

12

21

22

0

0 0 0

0 0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

T

D

D

D

D

=

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 

Poles of the system on the opened loop are: 
1

2

3

4

5

0.2

5330.1

17

202.4

5514.2

P

P

P

P

P

= −

=

=

= −

= −

 

 
Next, we specify the LMI  region for pole placement which is the disk with a center having 
an abscise =-10 and a radius = 1. Using state feedback controlu kx= , we obtained the 
following results: 
Poles of the system on the closed loop are: 

1

2

3

4

5

10.0481 0.9311

10.0481 0.9311

10.5171

9.9861

10.2313

P i

P i

P

P

P

= − +

= − −

= −

= −

= −

 

Guaranteed H∞  performance: 1.00 001e −  
Guaranteed 2H performance: 4.84 004e +  

0.4666 47.9144 1.9935 594.2312 0.0000

47.9243 1.2057 46.1725 1.3407 0.0000

4.3581 0.0000 0.0000 0.0000 0.1120

K

⎡ ⎤− − − − −⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦
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The Lyapunov matrix is 
1.0694 0.0000 1.2028 0.0008 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

1.2028 0.0000 1.3528 0.0009 0.00001.0 008 *
0.0008 0.0000 0.0009 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

X e

⎡ − − − − ⎤
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎢ ⎥= +
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

 

 
Where the eigenvalues are: 

0.0000

0.0000

0.00001.0 008 *
0.0000

2.4222

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

   
The simulation results are presented with the following figures: 

• Figure 2: State variables with multi objectives control 
• Figure 3: Corresponding control law 
• Figure 4: Corresponding closed loop poles 
 

 
Figure 2: State variables with multi objectives control 
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Figure 3:   Corresponding control law 

 

 
Figure 4: Corresponding closed loop poles 

2nd case:  Uncertain  system 

The use of tolerant robust control applied for three phases induction motor is validated by 
simulation on this system [7].We present the following uncertainty ranges for rotor resistor 
( )rR and the inertial moment( )J : 

2 2

0.5 1.5

0.010 / 0.015 /

rR

kg m J kg m

Ω ≤ ≤ Ω

≤ ≤
 

 

The state space description of this system is given by (23). 
We focus in this paper on the asynchronous motor and its model; hence, the control has 
already been realized through disturbances. It’s worth saying that the system remains 
unsteady in an opened loop-many poles have positive real parts- 
The system parameters are: 
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13

24

33

44

51 55

0.1008 4.0148 3.8386 0

4.0148 0.1008 3.8689 0

0.0964 3.8340 4.3218 01.0 003 *
3.8340 0.0964 3.6938 0

0 0 0

a

a

aA e
a

a a

⎡ ⎤−
⎢ ⎥
⎢ ⎥− − −⎢ ⎥
⎢ ⎥−⎢ ⎥= + ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
As the parameters ija are uncertain. 

13

24

33

44

51
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40.18 120.58

40.18 120.58

120.92 41.6

120.92 41.6
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0.19994 0.13329

a

a

a

a

a

a

≤ ≤

≤ ≤

− ≤ ≤−

− ≤ ≤−

− ≤ ≤−

≤ ≤−

 

1 1 1 1 1 0
T

B ⎡ ⎤= ⎢ ⎥⎣ ⎦ ; 2
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84 0 0

0 84 0

80 0 0

0 80 0

0 0

B

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Where                 5366.66 100b≤ ≤  
 

1 0 0 0 0 1C ⎡ ⎤= ⎢ ⎥⎣ ⎦  

2

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
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0 0 0

0 0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

T

D

D

D

D

=

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
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Poles of the system on the opened loop are: 

   

1

2

3

4

5

0.2

5330.1

17

202.4

5514.2

P

P

P

P

P

= −

=

=

= −

= −

 

Next, we specify LMI  region for pole placement which is the intersection of the: 
 Vertical          0.1x <−  

 Sector centered as the origin and with inner angle 3
4
π  

Using state feedback controlu kx= , we obtain the following results: 
System poles on the closed loop are: 

0.0055

0.0053

0.00021.0 006 *
0.0000

3.9229

e

−⎡ ⎤
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎢ ⎥+
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

 

 
Guaranteed infH  performance: 1.00 001e−  
 Guaranteed   2H  performance: 2.97 001e +  

0.0010 0.0077 0.0009 0.0093 0.0000

1.0 004 * 0.0095 0.0041 0.0092 0.0176 0.0000

0.0004 0.0000 0.0000 0.0000 4.3587

K e

⎡ ⎤− − − − −⎢ ⎥
⎢ ⎥= + ⎢ ⎥
⎢ ⎥
⎢ ⎥− − − −⎢ ⎥⎣ ⎦

 

 
The Lyapunov matrix is 

0.0010 0.0001 0.0010 0.0000 0.0000

0.0001 0.0000 0.0001 0.0000 0.0000

0.0010 0.0001 0.0009 0.0000 0.00001.0 004 *
0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 2.6380

X e

⎡ ⎤− − −
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −⎢ ⎥= + ⎢ ⎥
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

 

 
Where the eigenvalues are: 

   

0.0000

0.0000

0.00001.0 004 *
0.0020

2.6380

e

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The existence of Lyapunov matrixX , symmetric definite positive has; thus, been proved.  
For this type of formulation we study the stabilization of the 4 points given by the 
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uncertainty value of ( )rR  and( )J . The initial condition is 0 0.05 0 0 0 0.05
T

X ⎡ ⎤= ⎢ ⎥⎣ ⎦  

The simulation results are exhibited with the following figures: 
 Figure 5: State variables (Summit 1)  
 Figure 6: State variables (Summit 2) 
 Figure 7 State variables (Summit 3) 
 Figure 8: State variables (Summit 4) 

 

5. Simulation Results 

 
Figure 5: State variables (Summit 1) 

 
Figure 6: State variables (Summit2) 
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Figure 7: State variables (Summit 3) 

                               
Figure 8: State variables (Summit4) 

 
6. Conclusion 

In this paper, we emphasize the fault tolerant robust control of induction motor right 
through the pole assignment with a combination 2 /H H∞ constraints for the uncertain 
system. Moreover, we present in the state feedback case, a systematic LMI  approach to 
mix 2 /H H∞ synthesis with pole clustering in sector LMI  region. Eventually, the 
numerical example for continuous time system has been exhibited showing the efficiency 
and the performance of the proposed method, Furthermore, a performance test of this 
control has been carried out with the presence of structural parameter fluctuations of the 
induction motor such that rotor and stator resistances, inertia moment and friction 
coefficient. The efficiency and robustness of this control algorithm are also verified through 
the simulation results which have been found in the MATLAB. 
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