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In this paper, we present a permanent magnet motor cost minimization dedicated to the electric 
traction based on a genetic algorithms (GAs) method. Our objective is to minimize this cost by 
taking account of certain constraints. The choice of a suitable coding is a critical element which 
depends largely on the genetic algorithm effectiveness. That is why we present a comparative 
study between two types of genetic algorithms i.e. a binary coded genetic algorithm (BCGA) and a 
real coded genetic algorithm (RCGA). 
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1. INTRODUCTION 

The electric traction introduction into transport is accompanied by bodies optimization 
search into electric in order to minimizing the cost. This approach requires significant work 
on electric motors modeling especially the permanent magnet and radial flux synchronous 
motor. In road traction application (electric vehicle EV), the specific and voluminal power 
constraint leads originators to under dimensioning motor in order to reaching minimal cost 
[1]. 

In this paper, after presentation of the studied electric motor (EM) structure like his 
analytical modeling, we expose our optimization problem which is studied by two types of 
GAs the first one is with binary coding and the second is with real coding of which 
thereafter detailed comparative simulations. 

2. PROBLEM FORMULATION 

Any optimization problem requires a mathematical formulation, in particular our cost 
minimization problem. Basing on a studied motor analytical dimensioning model [2, 3], 
which starting from the schedule data conditions, the expert data, constants characterizing 
materials, and motor configuration, we deduces the geometrical and electromagnetic 
magnitudes motor (figure 1). 
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Figure 1: Analytical model 

The EM cost deduced from its analytical dimensioning equations [2]: 
( )( )ma m c c sy st toothi ry i mCost C M C M M M M M C C= + + + + + +        (1) 
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where:  

The magnets mass mM is defined by: 
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The copper mass cM is defined by the equation: 
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The stator teeth mass stM  is defined by the equation: 
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               (4) 

The stator yoke mass syM is defined by the equation: 
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The rotor yoke mass ryM is defined by the equation: 
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The inserted teeth mass toothiM  is defined by the equation: 

ds toothi
toothi

tooth

M A
M

A
=                         (7) 

where:  

maC  : Cost of one kilogram of magnets 

cC  : Cost of one kilogram of copper 

iC  : Cost of one kilogram of iron 

mC  : Manufacture cost per kilogram of iron 

P  : Number of poles pairs 

toothA  : The principal angular tooth width 

toothiA  : The angular inserted tooth width 

mL  : The average motor length 

mD  : The average motor diameter  

E  : The air-gap thickness  
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aH  : The magnet height 

dH   : The principal tooth height 

csH  : The motor rotor yoke height  

spL  : Inductance per phase 

nI  : Motor rated current  

sphN  : Number of spires per phase 

vaM  : Volumic Mass of magnets  

vcM  : Volumic Mass of copper 

vtH  : Volumic Mass of metal sheets 

After mathematical cost formulation of electric traction motor, we note that this cost 
depends primarily on the average motor length ‘

mL ’, average motor diameter ‘ mD ’, wheel 
radius ‘rroue ’, air-gap flux density ‘be ’, air-gap thickness ‘e ’, and the reducer ratio ‘rd ’. 
Consequently, we notethat this cost can be expressed differently by the following equation: 

( ), , , , ,m mCost F D L be e rroue rd=                    (8) 

The two-dimensional cost evolution according to these parameters is illustrated by 
figures 2, 3, 4. This evolution is not linear, which validates the application of stochastic 
methods like genetic algorithm in order to find the optimal six parameters. 

 

 

Figure 2: Motor cost as a function of ‘ rroue ’ and ‘ be ’ 

 

 
Figure 3: Motor cost as a function of ‘ mL ’ and ‘ mD ’ 



J. Electrical Systems 3-2 (2007): 100-108 
 

 103 

 

 

Figure 4: Motor cost as a function of ‘ e ’ and ‘ rd ’. 

3. OPTIMIZATION PROBLEM 

Electromagnetic optimization problems, generally involve several parameters, which can 
be continuous or discrete and are often bounded. Moreover, the objective functions that 
arise in electromagnetic optimization problems are often nonlinear, stiff, multi-extremal 
and non-differentiable. GAs are robust, stochastic-based methods which can handle the 
common features of electromagnetic optimization problems that are not readily handled by 
other traditional optimization techniques. 

The optimization problem consists in determining optimal parameters values 
,  ,  ,  ,  ,  mopt mopt opt opt opt optL D rroue be e rd  which correspond to minimal motor cost ‘ optcost ’. 

The beach of each parameter variation must respect the following constraint 
min maxi i iX X X≤ ≤ , where ( ), , , , ,i m mX D L be e rroue rd∈ .  

The values of the lower limit miniX and the upper limit maxiX  are established following 
technological, physical and expert considerations, for example: 

- The wheel radius is delimited by the space reserved in electric vehicle. 

- The air-gap flux density variation beaches are defined starting from the iron B-H curve to 
avoid saturation problem. 

-The current density is an expert data. 

The optimization problem consists on optimizing the motor cost by keeping efficiency 
higher than 0.95% and respecting the constraints illustrated by Table 1: 

Table 1: Optimization limits parameters.  

 Lower limit Variables Upper limit

100 Dm (mm) 250 

150 Lm(mm) 200 

0.89 be(T) 1.05 

2 rd 8 

2 e(mm) 8 

0.25 rroue(m) 0.35 
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3.1 Optimization with GAs method 

GAs are stochastic optimization techniques founded on natural selection and genetics 
concepts [4]. It starts with a set of solutions called population. Solutions from a population 
are used to form a new population. This is motivated by the hope that the new population 
will be better than the old one.  

Solutions that will form new solutions are selected according to their fitness: the more 
suitable they are, the more chances they have to reproduce. This is repeated until some 
condition (for example, number of generations or improvement of the best solution) is 
satisfied. 

Figure 5 illustrate the applied procedure of optimization. The first step is the 
characterization of the individuals that will form the population. The individuals are 
composed by the six parameters of the motor cost.  

 Definition of program 
parameters

Initial population 

Evaluation 

Stop condition 

Genetic operator like : 
Crossover-Mutation 

New population
Evaluation 

No

Yes

End

 
Figure 5: Optimization procedure. 

The initial values assigned to the population are random values in the allowable range, as 
shown in Table 1. Each individual of this population is evaluated using the fitness function. 
The convergence criterion is based on a maximum allowed number of generations. 

If convergence is not attained, genetic operators (selection, crossover and mutation) are 
applied. The selection procedure is responsible for forming the pairs that will be submitted 
to the other genetic operators. Selection is a mechanism related to individual fitness. 
Crossover and mutation are mechanisms used to change the genetic materials of the 
individuals. They are the main tools for the success of the optimization process and must be 
implemented in order to allow an effective exploration of the search space. The new 
individuals created by the genetic operators described above will be evaluated and the 
iterative process will be repeated until one of convergence criteria is reached [5]. 

The principal difficulty encountered with GAs is the coding problem in a specific form to 
genetics, several possibilities exist in [5] especially the traditional binary coding and real 
coding. 

3.2 A binary coded genetic algorithm 

Initially, to solve the optimization problem, we use a BCGA which our variables are 
coded in binary with discretization of research space. Thus a coding on k bits implies a 
discretization of intervals in max 2 1kg = −  discrete values. We consider a finished space of 
research: 
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imin i imaxX X X [1; var]i n≤ ≤ ∀ ∈                   (9) 

where varn  represent the number of variables. 

To each real variable iX  we associates therefore a long whole ig : 

[ ]max0 1; varig g i n≤ ≤ ∀ ∈                     (10) 

where: 
6

0

2ji j
j

g b
=

=∑                            (11) 

Coding and decoding formulae are then following: 
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max min

i i

i
i i
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−
=

−
                        (12) 

( )min max min
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i
i i i i

g
X X X X

g
= + −                     

 (13) 

The various procedure of this algorithm is in [3].  

3.3 A real coded genetic algorithm  

In second phase, we used a RCGA, where each individual is then one digit with actual 
values in the research space [5].This coding consists simply in the concatenation of 
variables Xi of an individual X defined by: 

1 2 var.... nX X X N=                          (14) 

The first stage of the algorithm is the generation of initial population, which consists in 
creating randomly genes according to uniform distribution. We consider the case where the 
population is given by: 

,1 ,1 ,1 ,1 ,1 ,1

, , , , , ,

n n n n n n
m m
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n Np n Np n Np n Np n Np n Np
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⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥⎣ ⎦

            (15) 

where each line represents an individual (a point in the optimization space), n is the 
generation and Np is the population size. 

Then, after generating initial population, each individual is evaluated according to 
equation 1 which is given by the following structure: 

1 1

2 2

Np Np

f individu

f individu

f individu

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                          (16) 
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After evaluation, we apply selection operator which determines and chooses population 
members who survive and who reproduce. The “Tournament” method was used as selection 
procedure which increases the chances for poor quality individuals to take part in the 
population improvement. 

Then, we applies arithmetic crossing operator which carries out a simple linear 
combination between two parents: 

1 2 var

1 2 var

...

...

n

n

X X X X

Y YY Y

⎧ =⎪⎪⎪⎨⎪ =⎪⎪⎩
                        (17) 

by generating a random variable, (0,1)α ∈  [6]-[7], we obtains two children defined by: 

'

'

(1 )

(1 )

X X Y

Y X Y

α α

α α

⎧⎪ = + −⎪⎪⎨⎪ = − +⎪⎪⎩
                       (18) 

After crossing application, we apply uniform mutation operator where we take 
variable iX X∈ [6, 7]. This last, will be changed according to certain probability into 
random number in a uniform distribution on the interval min max[ , ]i iX X . 

The new individual is: 

min max min( )i i i iY X r X X= + −                     (19) 

where r  is a random variable in the interval [0,1]. 

We carried out some simulations in order to validate our GAS: BCGA and RCGA. We 
used the Rastrigin function as test function. The results obtained with RCGA were 
practically the same obtained using BCGA. 

4. RESULTS  

GAs is programmed in MATLAB 7.0 on PC Pentium 4, 2.0 GHz and 128 MB of RAM 
using characteristics tabulated in table 2. 

Table 2: GAs characteristics. 

 Characteristics BCGA RCGA 

Selection Roulette 
wheel 

Tournament 

Crossover Simple- point Arithmetic 

Mutation No uniform Uniform 

Number of 
population 

350 
individuals 

350 
individuals 

Number of 
generation 

800 
iterations  

800 iterations  

Crossover 
probability 

0.85 0.85 

Mutation 
probability 

0.01 0.01 
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The optimization procedure was executed several times. In the great majority of the 
cases, the algorithm found practically the same best individual. This demonstrates the 
convergence of the applied methodology. For a stochastic optimization method, the final 
solution can only be considered optimal by repetition of the results [8].  

Figure 6 shows a comparison between application of BCGA and RCGA for minimal cost 
motor determination.  

We notice that the obtained results by the application of RCGA method are definitely better 
compared to those found by the BCGA. We obtain with RCGA a cost of 929.3$ compared 
to BCGA, i.e. a cost of 930.4$. 

The cos optt  was obtained after 20.25 minutes for the 800 generations. However the 
improvement was faster and more effective concerning RCGA, where the optimum was 
obtained after only 5.12 minutes for the 800 generations. 

The GAs methodology used in this work allows obtaining results with good precision. Real 
coding has advantages related to the convergence time (few generations) and simplicity to 
assemble the individuals (it is not necessary to code them in binary representation). 
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Figure 6: EM cost according to the number of generation. 

The simulation results are tabulated by table 3. 

Table 3 : GAs results 

 Optimised 
variables 

Optimised variables value with 
RCGA 

Optimised variables Value 
with BCGA 

Dmopt(mm) 101.13 100 

Lmopt(mm) 150.53 196.82 

beopt(T) 0.891 1 

eopt(mm) 2.041 7.994 

rroueopt (mm) 251.80 258.21 

rdopt 7.95 7.15 

Costopt ($) 929.3 930.4 

 

5. CONCLUSION 

GAs have a strong potential of practical application. The choice of coding individuals 
remains one of the problems of GAs, it is very difficult to find a good coding adapted to the 
structure of the problem. Results found by BCGA are acceptable but the computing time is 
rather significant, on the other hand RCGA give satisfactory results with a reasonable 
computing time, for this reason we may find it beneficial to use the real representation of 
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individual when the problem parameters have great values and require a high degree of 
accuracy. 

The use of RCGA in electric traction field can constitute an interesting alternative seen 
its effectiveness for the problems resolution to several variables and constraints, and it 
treats a population of solutions. 

Finally, the EV designed around a reduced cost of permanent magnets EM presents an 
interesting solution in the world of electric vehicles.  
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