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This paper presents a self-adaptive differential evolution with augmented Lagrange multiplier 
method (SADE_ALM) for solving optimal power flow (OPF) problems with non-smooth generator 
fuel cost curves. The SADE_ALM is a modified version of conventional differential evolution (DE) 
by integrating mutation factor (F ) and crossover constant (CR ) as additional control variables. 
An augmented Lagrange multiplier method (ALM) is applied to handle inequality constraints 
instead of traditional penalty function method, whereas the sum of the violated constraint (SVC ) 
index is employed to ensure that the final result is the feasible global or quasi-global optimum. 
The proposed algorithm has been tested with the IEEE 30-bus system with different fuel cost 
characteristics, i.e. 1) quadratic cost curve model, and 2) quadratic cost curve with rectified sine 
component model (valve-point effects). Numerical results show that the SADE_ALM provides very 
impressive results compared with the previous reports. 

Keywords: Differential evolution, Non-smooth fuel cost function, Optimal power flow, Self-
adaptation. 

1. INTRODUCTION 

Optimal power flow (OPF) is a large dimension nonlinear, nonconvex and highly 
constrained optimization problem that has been used widely for power system planning and 
operation. It is nonconvex due to existence of nonlinear AC power flow equations, non-
smooth or nonconvex fuel cost functions (e.g., valve-point effects, multiple fuels [1]), or 
the flexible alternating current transmission system (FACTS) devices in the power system.  

Conventional gradient based optimization techniques such as linear programming, 
nonlinear programming, quadratic programming, and interior point method, have been used 
to solve the OPF problems. The literatures of those approaches were reviewed by Momoh 
et. al. [2-3]. These methods rely on convex and continuous fuel cost function to obtain the 
global optimum solution, and as such, these curves must be approximated by continuous 
and monotonic functions. Therefore, the drawback of conventional gradient based method 
usually converges to sub-optimal solution when nonconvex characteristics of fuel cost 
function are considered [4]. Many heuristic algorithms such as evolutionary programming 
(EP) [4], tabu search (TS) [5], hybrid tabu search and simulated annealing (TS/SA) [6], 
improved tabu search (ITS) [7], and improved evolutionary programming (IEP) [8] have 
been proposed to solve the OPF problems. These techniques search for the global or quasi-
global optimum for any type of objective function and constraints without any requirement 
of the gradient information, and the results reported were promising and encouraging for 
further research in this direction. 

Recently, differential evolution (DE) has been increasing attention for a wide variety of 
engineering application including power engineering [1, 9, 10]. DE is an evolutionary 
algorithm (EA) that uses rather greedy selection and less stochastic approach to solve 
optimization problems than other classical EAs such as genetic algorithm (GA), 
evolutionary programming (EP), and evolutionary strategies (ES). The potentialities of DE 
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are its simple structure, convergence property, quality of solution, and robustness [11-12]. 
However, tuning the DE’s parameters – mutation factor (F ), crossover constant (CR ), and 
population size (NP ) – is a tedious task due to complex relationship among parameters. 
The optimal parameter settings may never be found, and the final result may be trapped in a 
local optimum [1, 13]. 

In this paper, we present a self-adaptive differential evolution with augmented Lagrange 
multiplier method (SADE_ALM) [1] for solving the OPF problems with non-smooth 
generator fuel cost curves. Treated as additional control variables, the mutation factor (F ) 
and the crossover constant (CR ) are dynamically self-adaptive throughout the evolutionary 
process to avoid local optimal trapping. An augmented Lagrange multiplier method (ALM) 
[1] is applied to handle inequality constraints instead of traditional penalty function method, 
whereas the sum of the violated constraint (SVC ) index is employed to ensure that the 
final result is the feasible global or quasi-global optimum.  

2. OPF PROBLEM FORMULATION 

The optimal power flow (OPF) problem is to optimize the total generator fuel cost 
function subject to power balance constraints and inequality constraints imposed on the 
operation of power system. Mathematically, the OPF problem can be formulated as 
follows: 

( ),Min J X U                           (1) 

subject to 

( ), 0h X U =                            (2) 

( ), 0g X U ≤                            (3) 

where ( ),J X U  is the objective function to be minimized, ( ),h X U  is the equality 
constraints and represent typical power flow equations. ( ),g X U  is the system operating 
constraints. U  is the vector of state variables consisting of real power of slack generator 

1GP , voltage magnitude of load buses LV , reactive power of all generators GQ , transformer 
and transmission line loadings lS . Therefore, U  can be expressed as 

1 1 1 1[ , ,..., , ,..., , ,..., ]T
G L LNL G GNG l lNBRU P V V Q Q S S= , where NL , NG , and NBR  are 

number of load buses, number of generators, and number of transformers and transmission 
lines. X  is the vector of control variables consisting of real power of all generators 
excluding slack generator, voltage magnitude of all generators GV , and transformer tap 
settings T .  

Therefore, X  can be expressed as 2 1 1[ ,..., , ,..., , ,..., ]T
G GNG G GNG NTX P P V V T T=  where NT  

is the number of regulating transformers. Generally, in the OPF problem, the objective 
function J  is the total generator fuel cost, i.e. 

( )
1

NG

i Gi
i

J f P
=

= ∑                           (4) 

where ( )i Gif P  is the fuel cost function of the ith generator.  

The system operating constraints can be described below. 
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1) Generation constraints: Real and reactive power outputs, and voltage magnitude of 
generators are restricted by the lower and upper limits, i.e. 

min max,Gi Gi GiV V V i NG≤ ≤ ∈                     (5) 

min max,Gi Gi GiP P P i NG≤ ≤ ∈                     (6) 

min max,Gi Gi GiQ Q Q i NG≤ ≤ ∈                     (7) 

2) Transformer constraints: Transformer tap settings are restricted by the lower and upper 
limits as follows: 

min max,i i iT T T i NT≤ ≤ ∈                     (8) 

3) Securities constraints: These include the constraints of voltage magnitude at load buses 
and power flow through transformers and transmission line (MVA loading) as follows: 

min max,Li Li LiV V V i NL≤ ≤ ∈                     (9) 

max,li liS S i NBR≤ ∈                      (10) 

As mentioned earlier, the fuel cost function of generating units is generally represented 
by simple quadratic function as shown in (11). 

( ) 2
i Gi i Gi i Gi if P a P b P c= + +                       (11) 

where GiP  is the real power of the ith generator, and ia , ib , and ic  are the fuel cost 
coefficients. 

Considering valve-point effects [1], the fuel cost function of generating units consists of 
rectified sine components superimposed on the quadratic function as follows: 

2 min( ) sin( ( ))i Gi i Gi i Gi i i i Gi Gif P a P b P c d e P P= + + + × × −            (12) 

where min
GiP is the lower limit of real power of the ith generator, and id  and ie  are fuel cost 

coefficients of the ith generator with valve-point effects. 

It is worth mentioning that the inequality constraints of the control variables are self-
constrained. In this paper, the inequality constraints of the state variables are handled using 
the augmented Lagrange multiplier (ALM) method. Generally, the penalty function method 
is the most popular methods for handling inequality constraints, due to its simple concept 
and convenience to implementation. However, the penalty function method does suffer 
from the complication that as the penalty parameter is increased toward infinity; the 
structure of the unconstrained problem becomes increasing ill-conditioned. Therefore, each 
unconstrained minimization problem becomes more difficult to solve, which has the effect 
of slowing the convergence rate of the overall optimization process. On the other hand, if 
the penalty parameters are too small, the constraint violation will not impose a high cost on 
the penalty function. Thus the optimal solution based on the penalty function may not be 
feasible, whereas the ALM method can be employed easily to handle inequality constraints 
without those difficulties [1, 14-15]. 
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The unconstrained minimization problem through the augmented lagrange function aL  
can be defined by augmented the m-inequality constraints of the state variables with the 
objective function as shown below [1]. 

( ) ( ) ( )

2

1 1

, max , , max , ,
2 2

m m
j j

a g j j j
j jg g

L f X U r g X U g X U
r r

β β
β

= =

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥= + − + −⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
∑ ∑   (13) 

where ( )
jg ⋅ , 1,2,...,j m= , ( )2 1m NL NG NBR= + + +  are the m -inequality 

constraints of the state variables which can be defined as follows: 

1) Real power of slack generator 1GP  

( )min
1 1 1G Gg P P= − +                         (14) 

( )max
2 1 1G Gg P P= −                          (15) 

2) Voltage magnitude of load buses LiV , 1,2,...,i NL=  

( )min
i Li Lig V V= − +                         (16) 

( )max
1i Li Lig V V+ = −                         (17) 

3) Reactive power of generators GiQ , 1,2,...,i NG=  

( )min
i Gi Gig Q Q= − +                         (18) 

( )max
1i Gi Gig Q Q+ = −                         (19) 

4) Transformer and transmission line loadings liS , 1,2,...,i NBR=  

( )max
i li lig S S= −                          (20) 

gr  is the positive penalty multiplier, and jsβ  are the lagrange multiplier of the associated 
inequality constraints. 

After the unconstrained minimization problem has been solved, the lagrange multipliers 
jsβ  and the penalty parameter gr  will be updated to create the new augmented lagrange 

function aL  as follows [1]: 

( )1 2 max , ,
2

i
ji i

j j g j
g

r g X U
r

β
β β+

⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪⎪ ⎪⎢ ⎥= + −⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭
                (21) 

,max1

,max

, if 

,   otherwise

i i
g g g gi

g
g

c r r r
r

r
+

⎧ × ≤⎪⎪⎪= ⎨⎪⎪⎪⎩
                     (22) 

where 
gc  is the positive constant increasing rate, and ,maxgr  is the maximum penalty 

multiplier. 

From (21), it can be seen that the Lagrange multipliers jsβ  are deterministically updated 
using the inequality constraint functions evaluated from the previous solution of the 
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unconstrained minimization problem, while the penalty parameter gr  is increased by a 
constant rate until it reaches the predetermined maximum value as shown in (22). The 
algorithm is then repeated until termination. The detail of the proposed algorithm will be 
described in the next section. 

3. SADE_ALM BASED OPTIMAL POWER FLOW (SADE_ALM-OPF) 

The proposed self-adaptive differential evolution with augmented Lagrange multiplier 
method (SADE_ALM) consists of two iterative loops, i.e. the inner loop and the outer loop. 
The inner loop solves the unconstrained minimization problem through the augmented 
Lagrange function aL  using self-adaptive differential evolution (SADE). Figure 1 shows 
the chromosome structure of SADE. It can be seen that the mutation factor (F ) and the 
crossover constant (CR ) are embedded as additional control variables in the first and 
second positions of the n -dimensional parent vector jX  respectively. After the 
unconstrained minimization problem has been solved, the outer loop will update the 
Lagrange multipliers jsβ  and the penalty parameter gr  by the ALM method to create the 
new augmented Lagrange function aL . The algorithm is then repeated until a termination 
criterion, i.e. maximum number of iterations or convergence of the optimal solution, is 
reached. The flowchart of the SADE_ALM when applied to solve the OPF problems is 
shown in Figure 2. 

 1 2 3 4 n+2
jX jF jCR

1x 2x nx  
Figure 1: Chromosome structure of SADE. 

3.1 The inner loop iteration 

The inner loop solves the augmented Lagrange function aL  using self-adaptive 
differential evolution (SADE) of which its details can be described hereafter. 

3.1.1 Initialization 

Set maximum iteration number of the inner loop ( iN ), convergence tolerance ( xεΔ ), and 
then create the initial population size NP , associated with their lower and upper limits as 
follows: 

( ), , ,ij ij low ij ij hi ij lowx x x xρ= + × −                     (23) 

( ), 1 , ,j j low j j hi j lowF F F Fρ= + × −                     (24) 

( ), 2 , ,j j low j j hi j lowCR CR CR CRρ= + × −                  (25) 

where ijx  is the OPF control variable i  of the n -dimensional parent vector jX , ,ij lowx , 
and ,ij hix  are the lower and upper limits of ijx , jF  is the mutation factor for individual jX , 

,j lowF , and ,j hiF  are the lower and upper limits of jF , jCR  is the crossover constant for 
individual jX , ,j lowCR , and ,j hiCR  are the lower and upper limits of jCR , and ijρ , 1jρ , and 

2 jρ  are uniformly distributed random numbers within [ ]0,1  for individual ijx , jF , and 

jCR  respectively.  
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Initialization (ALM)
i = 0

Initialization (SADE)
j = 0

i <= No
?

j <= Ni
?
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Handling boundary constraints

Crossover

Solve power flow
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Converged ?

No

j = j + 1

Yes

SVC
Violated ?

ALM
Converged ?

No

No

Update the lagrange multipliers
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Apply the most
feasible elitism

Yes

Yes

i = i + 1

No

No Stop

Yes

SADE

Yes

Solve power flow

Evaluation & selection

Verifying constraint
violation

Create a new augmented
lagrange function, La

 
Figure 2: Flowchart of SADE_ALM-OPF. 

An individual jX  in a population represents a candidate of OPF solution. Each individual 
consists of jF , jCR , and OPF control variables ijx  including real power of all generators 
excluding slack generator, voltage magnitude of all generators, and transformer tap settings.  

3.1.2 Power flow solution 

For each individual jX , the Newton-Raphson (NR) power flow is applied to determine 
the state variable of the associated jX . If the power flow of any individuals fails to 
converge, such individuals will be removed and replaced by new randomly generated 
individuals. This process is repeated until the power flow calculations of such individuals 
are converged. 

3.1.3 Mutation 

For each individual jX , a mutant vector jX ′  is created according to the following 
expression. 
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( )
3 1 2, , ,ij ij r j ij r ij rx x F x x′ = + × −                     (26) 

( )
3 1 2, , ,j j r j j r j rF F F F F′ = + × −                      (27) 

( )
3 1 2, , ,j j r j j r j rCR CR F CR CR′ = + × −                   (28) 

where 1r , 2r , and 3r  are randomly chosen indices such that 1r , 2r , and ( )3 1,r NP∈  and 

1 2 3r r r≠ ≠ . 

3.1.4 Handling boundary constraints 

In the event that mutation causes control variables, ijx ′ , jF ′ , and jCR′ , exceeded their 
boundary constraints, i.e. lower or upper limit, such variables will be set to the nearest 
boundary. 

3.1.5 Crossover 

To increase the diversity of the mutant vectors, crossover is introduced to create the trial 
vector jX ′′  based on a series of 1n −  binomial experiments [11-12] as follows: 

,

,   or 

otherwise

ij ij j rand

ij
ij

x CR i i
x

x

ρ⎧ ′ ∀ ≤ =⎪⎪⎪′′ = ⎨⎪⎪⎪⎩
                  (29) 

1

,

,   or 1

otherwise

j j j rand

j
j

F CR i
F

F

ρ⎧ ′ ∀ ≤ =⎪⎪⎪′′= ⎨⎪⎪⎪⎩
                  (30) 

2

,

,   or 2

otherwise

j j j rand

j
j

CR CR i
CR

CR

ρ⎧ ′ ∀ ≤ =⎪⎪⎪′′= ⎨⎪⎪⎪⎩
                 (31) 

where ijρ , 1jρ , and 2 jρ  are the uniformly distributed random number within [0,1] for 

individual ijx ′′ , jF ′′ , and 
jCR ′′  respectively, and ( )1, 2randi n∈ +  is a generated random 

integer number to ensure that the trial vector jX ′′  is different from its associated parent 
vector jX . 

3.1.6 Evaluation and selection 

To create the new population in the next generation 1G + , the fitness value or the 
augmented objective value in (13) of the trial vector ( )G

jX ′′  is compared with its parent 

vector ( )G
jX  in the same way as in the classical DE as shown below. 

( )

( ) ( )( ) ( )( )
( )

1
,  if

,  otherwise

G G G
j a j a jG

j G
j

X L X L X
X

X
+

⎧⎪ ′′ ′′ ≤⎪⎪= ⎨⎪⎪⎪⎩

                (32) 

The inner loop will be terminated according to two defined criteria, i.e. 1) maximum 
iteration number of the inner loop ( iN ), and 2) convergence of the optimal solution defined 
by (33) 
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opt XX εΔΔ ≤                            (33) 

where XεΔ  is a convergence tolerance value of optXΔ , determined by  

( ) ( )1G G
opt opt optX X X −

∞
Δ = −                       (34) 

where .
∞

 is the infinity-norm, ( )G
optX  and ( )1G

optX
−  are the optimal solution obtained at 

current generation (G ) and previous generation ( 1G − ) respectively. 

3.2 The outer loop iteration 

After the inner loop has converged, the outer loop is started by using the ALM method to 
handle the inequality constraints of the state variables. The details of the outer loop can be 
described as shown below. 

3.2.1 Initialization 

Set maximum iteration of the outer loop ( oN ), the constrain violation tolerance ( SVCε ), 
the Lagrange multiplier sβ , and the penalty parameters gr  including gc , and ,maxgr . 

3.2.2 Verifying constrain violation 

The constrain violation of the optimal solution obtained from the inner loop ( *
optX ) is 

verified through the sum of the violated constraints (SVC ) index as shown in (35) and 
(36). 

SVCSVC ε≤                            (35) 

( ){ }*

1

max , 0
m

j opt
j

SVC g X
=

⎡ ⎤= ⎢ ⎥⎣ ⎦∑                     (36) 

where ( )
jg ⋅ , 1,2,...,j m=  are the m -inequality constraints of the state variables as 

explained in section 2. 

3.2.3 Creating a new unconstrained minimization problem 

To create a new unconstrained minimization problem for the next inner loop iteration, 
the new augmented lagrange function aL  is created by updating the lagrange multiplier sβ  
and the penalty parameter gr  according to (21), and (22) respectively. 

3.2.4 Appling the most feasible elitism 

To improve the efficiency of the proposed algorithm, the most feasible elitism ( eliteX ) is 
employed by replacing the worst individual jX  which has the highest fitness value for the 
next inner loop iteration. The elitist member is initialized by using the optimal solution 
obtained from the first inner loop iteration. Then, it is updated according to the extent of the 
violated SVC  value and the total generator fuel cost in (4) as follows: 

1) If ( )( )1K
elite SVCSVC X ε− > , then  

( )

( ) ( )( ) ( )( ) ( )( ) ( )( )
( )

* * 1 * 1

1

,  if and

,   otherwise

K K K K K
opt opt elite opt eliteK

elite K
elite

X SVC X SVC X J X J X
X

X

− −

−

⎧⎪ ≤ ≤⎪⎪= ⎨⎪⎪⎪⎩

    (37) 



C. Thitithamrongchai & B. Eua-arporn: Self-adaptive Differential Evolution Based Optimal Power Flow… 
 

 96 

2) If ( )( )1K
elite SVCSVC X ε− ≤ , then ( )

( ) ( )( ) ( )( )
( )

* * 1

1

,  if 

,   otherwise

K K K
opt opt eliteK

elite K
elite

X J X J X
X

X

−

−

⎧⎪ ≤⎪⎪= ⎨⎪⎪⎪⎩

     (38) 

where ( )K
eliteX  and ( )1K

eliteX −  are the elitist members of the current (K ) and previous ( 1K − ) 
iteration of the outer loop respectively, and *( )K

optX is the optimal solution obtained from the 
current (K ) iteration of the inner loop.  

The outer loop will be terminated according to the same criteria as defined for the inner 
loop, i.e. 1) maximum iteration number of the outer loop ( oN ), and 2) convergence of the 
optimal solution. 

4. SADE_ALM-OPF IMPLEMENTATION RESULTS 

The proposed SADE_ALM for solving the OPF problems was tested on the IEEE-30 bus 
test system given in Alsac and Stott [16]. To demonstrate the effectiveness of the proposed 
algorithm, SADE_ALM was tested and compared with EP [4], TS [5], TS/SA [6], ITS [7], 
and IEP [8] based on different fuel cost characteristics, i.e. 1) quadratic cost curve model, 
and 2) quadratic cost curve with rectified sine component model (valve-point effects). For 
each case, 10 independent runs were conducted. The parameters of SADE_ALM for all 
cases were set as follows: 20NP = , [ ]0.2,1F = , [ ]0.1,1CR = , 310gr = , 100gc = , 

8
,max 10gr = , 310iN = , 5oN = , 310Xε −

Δ = , 710SVCε −= . Additionally, the lagrange 
multiplier ( sβ ) of inequality constraints were initialized using zeros values for all cases.  

The program was developed based on free numerical software SCILAB 4.0 [17] on 
personal computer 2.8 GHz Pentium IV processors and 256 MB total memory. 

Table 1: Comparison of the total generator fuel costs for case 1 

 
Best cost Average 

cost
Worst 

cost
S.D. of 

cost
EP [8] 802.907 803.232 803.474 0.226 66.693
TS [8] 802.502 802.632 802.746 0.080 86.227

TS/SA [8] 802.788 803.032 803.291 0.187 62.275
ITS [8] 804.556 805.812 806.856 0.754 88.495
IEP [8] 802.465 802.521 802.581 0.039 99.013

SADE_ALM 802.404 802.407 802.411 0.003 15.934

Fuel Cost ($/hr.) Average 
computational 
time (minutes)

Algorithm
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Figure 3: Outer loop convergence characteristic of SADE_ALM for case 1. 
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4.1 Case 1: The OPF with quadratic fuel cost functions 

For this case, bus 1 is the slack bus of the system and the generator cost curves of all the 
generators are represented by quadratic function as shown in (11). The generator cost 
coefficients are given in Table A.1 [4, 8]. The simulation results are shown in Table 1 and 
the outer loop convergence characteristic of SADE_ALM is shown in Figure 3. 

4.2 Case 2: The OPF for units with valve-point effects 

In this case, the generator fuel cost curves of generator at bus 1 and 2 are represented by 
quadratic functions with rectified sine components using (12). Bus 5 is selected as the slack 
bus of the system to allow more accurate control over units with discontinuities in cost 
curves [4]. The generator cost coefficients of those two generators are given in Table A.2 
[4, 8]. The simulation results are shown in Table 2 and the outer loop convergence 
characteristic of SADE_ALM is shown in Figure 4. 

Table 2: Comparison of the total generator fuel costs for case 2 

Best cost Average 
cost

Worst 
cost

S.D. of 
cost

EP [8] 955.508 957.709 959.379 1.084 61.419
TS [8] 956.498 958.456 960.261 1.070 88.210

TS/SA [8] 959.563 962.889 966.023 2.146 65.109
ITS [8] 969.109 977.170 985.533 6.191 85.138
IEP [8] 953.573 956.460 958.263 1.720 93.583

SADE_ALM 944.031 954.800 964.794 5.371 16.160

Algorithm
Fuel Cost ($/hr.) Average 

computational 
time (minutes)
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Figure 4: Outer loop convergence characteristic of SADE_ALM for case 2. 

For all test cases, the results from ten test runs of SADE_ALM do not violate any 
constraints. Tables 1-2 show that best and average fuel costs of SADE_ALM are lower than 
those obtained by TS, TS/SA, ITS, EP, and IEP. For case 1, the best generator fuel cost of 
SADE_ALM in Table 1 provides very similar result with conventional gradient based 
method reported by Alsac and Stott [16]. For case 2, the best generator fuel cost of EP, and 
TS reported by Yuryevich and Wong [4], and Abido [5] respectively are less expensive 
than SADE_ALM in Table 2. However, the best solution given in Yuryevich and Wong [4] 
($919.89/hr.) violates reactive power of generator at bus 1 by -252.04 %, and line loading 
1-2 by +17%. Finally, the best solution given in Abido [5] ($919.715/hr) also has the 
violation on the limit of line loading 1-2 by +4.1%.  
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The optimal values of the best solution given by IEP [8] and SADE_ALM for each case are 
shown in Table 3. 

Table 3: Comparison of IEP and SADE_ALM optimal results for each case 

IEP [8] SA D E_A LM IEP [8] SAD E_A LM
PG1 (M W ) 176.2358 176.1522 149.7331 193.2903
PG2 (M W ) 49.0093 48.8391 52.0571 52.5735
PG5 (M W ) 21.5023 21.5144 23.2008 17.5458
PG8 (M W ) 21.8115 22.1299 33.4150 10.0000
PG11 (M W ) 12.3387 12.2435 16.5523 10.0000
PG13 (M W ) 12.0129 12.0000 16.0875 12.0000
V G1 (p.u.) 1.0500 1.0500 1.0500 1.0493
V G2 (p.u.) 1.0377 1.0381 1.0398 1.0271
V G5 (p.u.) 1.0091 1.0112 1.0145 1.0081
V G8 (p.u.) 1.0176 1.0190 1.0254 1.0109
V G11 (p.u.) 1.0880 1.0911 1.1000 1.0732
V G13 (p.u.) 1.0837 1.0891 1.0758 0.9634

t11 1.0070 1.0556 1.0336 0.9612
t12 0.9741 0.9000 0.9568 1.0680
t15 1.0117 1.0070 0.9953 1.0118
t36 0.9442 0.9420 0.9536 0.9041

Fuel Costs ($/hr.) 802.465 802.404 953.573 944.031

C ase 1 Case 2
Optim al solution

 

5. CONCLUSION 

A self-adaptive differential evolution with augmented Lagrange multiplier method 
(SADE_ALM) was applied to solve the OPF problems for generators with non-smooth fuel 
cost functions. The effectiveness of the proposed algorithm has been tested on the IEEE 30-
bus system with different fuel cost characteristics. The SADE_ALM is successfully and 
effectively implemented to find the global or quasi-global optimum of the OPF problems. 
Numerical results show that the SADE_ALM total generator fuel cost is less expensive than 
other approaches, i.e. tabu search (TS), hybrid tabu search and simulated annealing 
(TS/SA), improved tabu search (ITS), evolutionary programming (EP), and improved 
evolutionary programming (IEP). The proposed SADE_ALM shows promising capability 
for solving the OPF problems due to significant generator fuel cost savings.  
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APPENDIX 
Table A.1: Generator cost coefficients in case 1 

M in M ax a b c
1 50 200 0.00375 2.00 0
2 20 80 0.01750 1.75 0
5 15 50 0.06250 1.00 0
8 10 35 0.00834 3.25 0

11 10 30 0.02500 3.00 0
13 12 40 0.02500 3.00 0

Real pow er output 
lim it (M W ) Cost CoefficientsBus N o.

 
Table A.2: Generator cost coefficients in case 2 

Min Max a b c d e
1 50 200 0.00160 2.00 150 50 0.063
2 20 80 0.01000 2.50 25 40 0.098

Bus No.
Real power output 

limit (MW) Cost Coefficients

 


