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A new multi-objective Jaya (MOJaya) algorithm for solving optimal power flow (OPF) problem 
is developed in this paper. The developed MOJaya algorithm has been implemented to solve the 
multi-objective OPF (MOPF) problem with conflicting objectives, which are generating fuel cost 
minimization, voltage deviation improvement, voltage stability enhancement, active power losses 
reduction and system security enhancement. The developed algorithm is applied to find a set of 
Pareto-optimal solutions. Moreover, an algorithm based on fuzzy logic is implemented to identify 
the best compromise solution among the Pareto optimal set of solutions. Results are obtained by 
running the simulation on IEEE 30-bus test system which confirms the efficacy of the developed 
algorithm in solving real MOPF cases and also in ascertaining well-distributed Pareto optimal 
set of solutions.  

Keywords: Optimal power flow; Power system optimization; Multi-objective optimization; 
Jaya.  

Article history: Received 28 April 2018, Accepted 15  August 2018 

1. Introduction 

The Optimal Power Flow (OPF) problem has been a subject of interest since Carpentier 

introduced this term in 1962 [1] and later it was developed by Dommel and Tinney [2], and 

since then it has been a topic of considerable research in the domain of power system 

operation and planning. The sole purpose of OPF is to optimize a certain objective function, 

say fuel cost, by determining the optimal operational strategy of a power system, while 

simultaneously satisfying a set of physical and operational constraints as imposed by 

equipment, physics of electricity and network limitations [3] [4]. 

After scanning the recent literature about OPF, it can be noticed that there are many papers 

that have contributed to solve the OPF problem using either classical optimization algorithms 

or metaheuristic algorithms (sometimes called also computational intelligence algorithms). 

As reported in many research works, classical optimization algorithms that make use of 

derivatives and gradients need some simplifying assumptions. However, the OPF deals with 

the objective functions that are generally non-smooth, non-convex and non-differentiable [5]. 

Therefore, a need arises to develop new optimization algorithms that are efficient to handle 

such complexities. Metaheuristics have been extensively and successfully used over the last 

decade to solve the OPF problem. However, there is a relatively low number of papers that 

are devoted to the multi-objective OPF (MOPF) problem. 

Some example of metaheuristics used for solving the MOPF problem are discussed here. 

In [6] an Enhanced Genetic Algorithm (EGA) is used along with Strength Pareto 

Evolutionary Algorithm (SPEA) based approach having set of strongly dominated solutions 

in order to determine Pareto optimal set. The objective functions considered were fuel cost, 
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losses, and a voltage stability index. In [7] a Multi-Objective Differential Evolution (MODE) 

is used in order to solve the MOPF problem considering fuel cost, emission and losses of 

flexible AC transmission systems (FACTS) device-equipped power systems. In [8] another 

MODE Pareto-based approach algorithm is used in order to optimize fuel cost, losses and 

voltage stability. In [9] an Improved Particle Swarm Optimisation (IPSO) algorithm is used 

to solve the MOPF problem considering fuel cost, losses, emission and voltage stability index 

where an aggregation of objectives is used to convert the set of objectives into one objective. 

In [10] the Gravitational Search Algorithm (GSA) is applied considering fuel cost, voltage 

profile and losses where the objective functions are aggregated and the problem is converted 

into a single objective optimization problem. In [4] a modified Shuffle Frog Leaping 

Algorithm (MSLFA) using Pareto-based approach is applied to optimize fuel cost and 

emission. In [11] the Artificial Bee Colony (ABC) algorithm is used to optimize fuel cost, 

voltage profile, voltage stability index, losses, and emission via aggregation of objective 

functions. In [12] a fuzzy-based Modified Artificial Bee Colony (MABC) algorithm is 

employed for simultaneous optimization of fuel cost, emission, losses, and voltage profile. 

In that study the objectives are combined using fuzzy logic to form one single objective 

function. In [13] a Pareto-based approach using an hybrid algorithm based on PSO and SFLA 

algorithms is utilized where the objective functions considered are fuel cost and emission. In 

[14] a new Multi-objective Modified Imperialist Competitive Algorithm (MOMICA) is used 

in order to optimize fuel cost, emission, voltage profile and losses using a Pareto-based 

approach. In [15] ICA with some modified techniques (MICA) are used to solve the MOPF 

problem considering fuel cost, losses and voltage profile using a Pareto-based approach. In 

[16], a Pareto-based approach using a Modified Teaching–Learning Based Optimization 

(MTLBO) algorithm is proposed to solve the MOPF problem considering fuel cost and 

emission. In [17] a Pareto-based approach based on an Adaptive Group Search Optimization 

(AGSO) algorithm is used to optimize fuel cost, emission and security index. In [18] the 

Grenade Explosion Method (GEM) is used along with different aggregations functions to 

optimize different objectives which are: fuel cost, voltage profile, voltage stability index, 

emission and losses. 

In [19] a new metaheuristic called Jaya (a Sanskrit word meaning victory) is developed. 

Jaya is a population based optimization algorithm inspired from the idea that an optimal 

solution of a certain problem tends to move away from the worst solution and, 

simultaneously, finding its way to the best solution [19]. 

The main contribution of the paper is to develop and implement of a new multi-objective 

Jaya (MOJaya) algorithm for solving the MOPF problem. The MOPF is formulated in this 

paper using the following objective functions: fuel cost minimization, voltage profile 

improvement, voltage stability enhancement, active power losses reduction and system 

security enhancement.   

The remaining of this paper is organized as follows: section 2 describes the single 

objective OPF and MOPF problems, then, section 3 describes the Jaya algorithm and the 

developed MOJaya algorithm, while section 4 exposes the results obtained in this work along 

with a discussion about these results, and finally, conclusions are drawn in section 5. 

 

 

 



J. Electrical Systems 14-3 (2018): 165-181 
 

 167

2.  The OPF Problem 

Mathematically stating, the aim of the OPF is to minimize a particular objective function 

by optimizing a set of certain control variables, and simultaneously satisfying both equality 

and inequality constraints.  

2.1. Formulation 

There are two formulations of the OPF problem, based on number and nature of 

objectives: single objective OPF and multi-objective OPF.  

2.1.1. Single objective OPF 

IWhen only one objective function is optimized, the OPF is called a single objective one 

and it is noted as OPF in this paper. The single objective OPF problem can be formulated as 

follows [20],[21]: Minimize f�x, u�Subject to ��x, u� = 0and ℎ�x, u� ≤ 0 (1) 

Where: f�x, u� is the objective function, g�x, u� is the set of equality constraints, h�x, u� is 

the set of inequality constraints, x is the vector of dependent variables or state variables and  

u is the vector of independent variables or control variables. 

2.1.2. Multi-objective OPF 

When more than one objective function are optimized at a time, the OPF is called a multi-

objective one and it is noted in this paper as (MOPF). 

Therefore, the MOPF will take following mathematical formulation [18]: Minimize F�x, u� = �f��x, u�, f �x, u�, … , f"�x, u�#$Subject to ��x, u� = 0and ℎ�x, u� ≤ 0  (2) 

where: F(x, u) and k represent the vector and total number of objective functions, 

respectively. 

2.2. Design Variables 

2.2.1. Control Variables 

 In the OPF problem, following can be accounted as control variables: VG is the PV buses 

voltage magnitude, PG is the active power generation at PV buses (except slack bus), QC is 

the shunt VAR compensation, and T is the transformers tap settings. 

Hence, u can be expressed as: 

u%  =  &P() ⋯ P(+, , V(. ⋯ V(+, , Q0. ⋯ Q0+1  , T� ⋯ T3% 4 (3) 

where NT, NG, and NC are the number of transformers, generators and VAR 

compensators, respectively. 
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2.2.2. State Variables 

State variables for the OPF problem, generally, are: VL is the voltage magnitudes at PQ 

buses or load buses, PG1 is the active power generation at slack bus, Sl is the transmission line 

loadings (or line flow) and QG is the reactive power output of all generators. 

 

Hence, x takes following expression x%  =  �P(. , V5.   ⋯ V5+6 , Q(.  ⋯ Q(+, , S7.  ⋯ S789# (4) 

where, NL and nl represent the number of load buses number of transmission lines, 

respectively. 

It is worth to mention that, it is assumed that G1 is the slack bus, if this is not the case the 

number of the slack bus must be changed for both x and u. 

2.3. Objective functions 

In this paper, following five objective functions are taken into consideration.  

2.3.1. Objective function 1: Cost 

Primary objective of solving an OPF problem is to minimize generation fuel cost. This 

cost can be expressed as a quadratic function as follow: 

Cost = < => + @>AB > + C>AB> 
3(
>D�

 (5) 

where: AB > is the active power of the ith generator, NG is the number of generators and ai, 

bi and ci are the cost coefficients of the ith generator. Equation (5) represents a convex 

objective function. However, it can be non-convex in some cases, for instance, while 

considering multi-fuels option, it happens to be non-convex problem [22], [23]. 

2.3.2. Objective function 2: Voltage deviation 

To ensure power system’s safety and service quality, regulating bus voltage is a crucial 

requirement. Therefore, minimizing voltage deviation (VD) from 1.0 p.u. is the second 

objective function, as expressed below: 

VD = <FV5G − 1.0FKL
>D�

 (6) 

2.3.3. Objective function 3: Voltage stability index 

Predicting events of voltage instability is of prime importance for undisrupted operation 

of a power grid. In [24], a voltage stability index, Lmax, is developed by Kessel and Glavitch. 

Lmax is a function of local indicators Lj, as given below: 

LNOP = maxQLRS         j = 1,2, … , NL (7) 

where: Lj is the local indicator of bus j, given by: 
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LR = V1 − < H5(RX VXVR
3(
XD�

V         j = 1,2, … , NL (8) 

where matrix H is obtained by performing partial inversion on Ybus. Details of voltage 

stability index are available in [24]. 

The range of Lmax is from 0 to 1. Lower value indicates a more stable system. Thus, 

minimizing Lmax to enhance the voltage stability is another objective function. 

2.3.4. Objective function 4: Active power transmission losses 

Following expression accounts for the total active power loss: 

P5YZZ[Z = < AX
K\
>D�

= < AB>
K\
>D�

− < A]>
K\
>D�

 (9) 

where, PD is real load demand and NB denotes the total number of busses.  

2.3.5. Objective function 5: Security index (SI) 

The security index, proposed in this paper, is given by: 

SI = < _ `ab
à >  NOP c

da
>D�

 (10) 

where: àb  and à >  NOP are the apparent and maximum power flow in transmission line i, 

respectively. For enhances system security, SI must be minimized. 

2.4. Constraints 

In this paper, two types of OPF constraints are considered - equality and inequality 

constraints. 

2.4.1. Equality constraints 

Real power constraints are: 

AB> − A]> − e> < ef&g>f cosQh>fS +  i>f sinQh>fS4 K\
fD >

= 0 (11) 

However, reactive power constraints are given by: 

jB> − j]> − e> < ef&g>f sinQh>fS −  i>f cosQh>fS4 K\
fD >

= 0 (12) 

where h>f = h> − hf , Gij and Bij represent conductance and susceptance, respectively, 

between bus i and bus j. Both belong to the admittance matrix Qk>f = g>f + l i>fS. 
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2.4.2. Inequality constraints 

a) Generator constraints 

eBbNXm ≤ eBb ≤ eBbNOP,     n = 1, … , og (13) 

ABbNXm ≤ ABb ≤ ABbNOP,     n = 1, … , og (14) 

jBbNXm ≤ jBb ≤ jBbNOP ,     n = 1, … , og (15) 

 

b) Transformer constraints 

p>NXm ≤ p> ≤ p>NOP,     n = 1, … , op (16) 

c) Shunt VAR compensator constraints 

jqbNXm ≤ jqb ≤ jqbNOP,     n = 1, … , or (17) 

d) Security constraints 

eLbNXm ≤ eLb ≤ eLbNOP,     n = 1, … , os (18) 

             àb ≤ à >  NOP ,      n = 1, … , tu (19) 

2.4.2. Constraints handling 

Power flow, self-satisfies equality constraints, whereas, the optimization algorithm 

handles the inequality constraints imposed on control variables. However, the inequality 

constraints imposed on dependent quantities are handled using the penalty method. It consists 

of adding a measure of violation of considered quantities multiplied by penalty factors. The 

measure of violation is null if constraints are satisfied. 

3. The Optimization Algorithm 

3.1. Jaya Algorithm 

As aforesaid, Jaya algorithm is a newly developed optimization algorithm [19]. This 

algorithm is inspired by the fact that the candidates of the population should move towards 

the best solution of the population and avoid the worst one. Moreover, Jaya has a major 

distinction over other optimization algorithms because it has no specific parameters which 

must be carefully selected, and needs only common parameters like population size and the 

maximum number of iterations [19]. 

The main steps of the Jaya algorithm are described below: 

Step 1:  Initialization: In this step a population of ‘n’ candidates that has a predefined size is 

randomly generated in the search space.  

Step 2:  

 

Identification of best and worst solutions: After the initialization of the population, 

the best and worst candidates among the population in terms of objective functions 

are identified.   

Step 3: In this step, the candidates of the solution are moved using the following expression: x3[v�n� =  xw7x�n� + y� ∙ �X|[Z}�n� − |xw7x�n�|� − y ∙ �X�Y�Z}�n� − |xw7x�n�|� ∀n = 1: t 

(20) 
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where: r1 and r2 are two random numbers in the range [0, 1], XBest(i) and XWorst(i) are 

the best and worst candidates obtained at the itth iteration, respectively. 

For a given candidate, if the new solution (after moving) is better than the old one 

(before moving), the solution is accepted, and the corresponding candidate is 

updated. Otherwise, the new solution is discarded and the old one is kept.  

The process in step 2 and step 3 is repeated until a termination criterion is reached. The 

termination criterion chosen for Jaya is the maximum number of iterations and this criterion 

can be changed, and any other criterion can be implemented.  

3.2. The developed Multi-objective Jaya algorithm (MOJaya) 

3.2.1. Overview 

The As previously mentioned, a multi-objective Jaya algorithm noted as MOJaya is 

developed in this paper. MOJaya is based on SPEA2 (improving strength Pareto evolutionary 

algorithm) [25]. 

3.2.2. MOJaya algorithm 

The main steps of the MOJaya algorithm are:  

Step 1: Initialization: in this step an initial population noted as Pop�0� is randomly generated 

in the search space. Moreover, an empty external archive PopO���X�[�0� = ∅ is 

created. 

Step 2: Fitness assignment: the fitness values of all candidates of an overall population 

(POP = Pop ∪  PopO���X�[) composed of Pop�it� and PopO���X�[�it� is calculated 

using the following procedure:  

 For each candidate ‘i’, in the population Pop�it� and in the archive PopO���X�[�it� a 

strength S(i) is assigned which represents the number of candidates it dominates. 

Based on S(i), the raw fitness R(i) of a candidate ‘i’ is determined by following 

expression: R�i� = < S�j�f∈�w�f xYNXmO}[Z >
 (21) 

It is worth to mention that, since the MOPF problem is formulated as a minimization 

one, R(i)=0 corresponds to a nondominated candidate (a solution from the Pareto front) 

while a high value of R(i) is synonym to that this candidate is dominated by many 

candidates.  

After that, a density D(i) is calculated using the following expression: D�i� = 1�>" + 2 (22) 

where �>" is the k-th nearest neighbor (based on the distance in the objective space), � = √n ∙ n�. The 2 is added in the expression of D(i) to ensure that this one is 

comprised between 0 and 1.  

Finally, the fitness F(i) is calculated using the following expression: F�i� = R�i� + D�i� (23) 
 

Step 3: Environmental selection: in this step, the nondominated candidates in Pop�it� and in 

the archive PopO���X�[�it� are copied into PopO���X�[�it + 1�. If the size of PopO���X�[�it + 1� is superior than nA, PopO���X�[�it + 1� is reduced using the 

truncation operator, otherwise if the size of PopO���X�[�it + 1� is less than nA, then PopO���X�[�it + 1�  is completed by less dominated candidates in Pop�it� and in 
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PopO���X�[�it�. This will allow the size of PopO���X�[ to be constant over all iteration 

whatever the number of nondominated candidates found is.  

Step 4: Identification of best and worst solutions in POP based on fitness F. 

Step 5: Moving the candidates of POP using (20). Then, for a candidate in POP, if a new 

solution (after moving) dominates the old one (before moving) this solution is updated. 

Otherwise the new solution is discarded.  

This process in step 2 to step 5 is repeated until a termination criterion is reached. 

 

3.2.3. Best compromise solution via fuzzy decision 

For decision making, i.e. in order to help the decision maker, it is necessary to identify the 

best compromise solution among the set of nondominated solution found. Using the Fuzzy 

Set Theory, the best compromise solution is determined as follows. First, each objective 

function from the nondominated solution is replaced by a membership function defined as 

[8], [26], [27]: 

μX =
���
��1 �> < �>NOP�>NOP − �>�>NOP − �>NXm �>NXm < �> < �>NOP

0 �>NXm < �>
 

(24) 

where �>NOP and �>NXm denote the maximum and minimum of the corresponding objective 

function, respectively. A normalized membership function for each k is evaluated as under: 

μ� = max � ∑ �>"3Y�R>D�∑ ∑ �>"K��f>D�3mxZ"D� � 
(25) 

where Nobj and Nnds are the number of objective functions treated and the number of 

nondominated solutions found, respectively.  

4. Applications and Results 

Effectiveness of the developed MOJaya has been evaluated by testing it on the IEEE 30-

bus test system. This system has a generation capacity of 900.2 MW and it is composed of 

30 buses, 41 branches, 9 shunt capacitors, 6 generators and 4 tap changing transformers. 

Therefore, this system has 24 design variables. More details about this system are in [28].  

The investigated cases in this paper are shown in Table 1. First, five single objective OPF 

cases have been solved corresponding the five selected objective functions. Second, eleven 

MOPF cases combining the selected objective functions have been investigated.  

Table 1: Summary of investigated cases. 

Cases Type Cost VD Lmax Ploss SI 

CASE-1 Single objective      

CASE-2 Single objective      

CASE-3 Single objective      

CASE-4 Single objective      

CASE-5 Single objective      
CASE-6 Multi-objective      
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CASE-7 Multi-objective      

CASE-8 Multi-objective      

CASE-9 Multi-objective      
CASE-10 Multi-objective      

CASE-11 Multi-objective      

CASE-12 Multi-objective      
CASE-13 Multi-objective      

CASE-14 Multi-objective      
CASE-15 Multi-objective      
CASE-16 Multi-objective      

The developed program has been implemented using the commercial MATLAB software 

and the open source MATPOWER software. The simulation runs were performed using the 

proposed MOJaya approach with n = 100, nA=100, and a maximum of 500 iterations. 

4.1 Single Objective Problem 

The obtained results of this single objective OPF study are displayed in Table 2. Moreover, 

the convergence of the objectives is shown in Figure 1, Figure 2, Figure 3, Figure 4 and 

Figure 5. It can be noticed from these figures that the objective function converges quickly 

to the optimum value while the penalty term reaches zero after some iterations.  

This study is very useful since it helps to identify the range of variation of each objective 

function and will help to analyze the best compromise solution later. 

 Table 2: Optimal results found for the single objective OPF cases using Jaya. 

Variables CASE-1 CASE-2 CASE-3 CASE-4 CASE-5 

PG1 177.0386 89.0808 53.4323 51.2433 78.5505 

PG2 48.6817 78.6206 79.4068 79.9994 79.9934 

PG5 21.3210 49.8306 49.6937 50.0000 49.9996 

PG8 21.0966 34.6289 34.2490 34.9999 34.9847 

PG11 11.8740 23.9941 29.9464 30.0000 29.9922 

PG13 12.0001 12.0077 39.7724 39.9999 13.5290 

VG1 1.1000 1.0248 1.0991 1.1000 1.0999 

VG2 1.0807 1.0143 1.0925 1.0932 1.0914 

VG5 1.0541 1.0127 1.0868 1.0752 1.0584 

VG8 1.0619 1.0071 1.0783 1.0822 1.0704 

VG11 1.1000 1.0441 1.0998 1.1000 1.1000 

VG13 1.1000 1.0004 1.0999 1.1000 1.0948 

T11(6-9) 1.0216 1.0646 0.9791 1.0526 0.9799 

T12(6-10) 0.9000 0.9010 0.9063 0.9000 0.9797 

T15(4-12) 0.9645 0.9574 0.9746 0.9836 0.9815 

T36(28-27) 0.9530 0.9699 0.9437 0.9686 0.9794 

QC10 4.9998 4.4080 4.3023 4.9936 4.9830 

QC12 5.0000 0.0000 4.0689 4.9955 5.0000 

QC15 4.9955 4.8290 3.4300 3.8780 2.8708 

QC17 4.9999 0.0773 4.2433 5.0000 4.9847 

QC20 4.2670 4.9988 4.7195 3.6541 3.7408 
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QC21 4.9998 4.8611 0.0426 5.0000 4.9775 

QC23 2.6187 4.9784 0.1934 2.4078 1.1458 

QC24 5.0000 4.9206 0.0277 4.9988 4.9916 

QC29 2.3064 2.5858 0.1018 2.0461 2.5062 

Cost ($/h) 799.0343 907.2475 963.1270 967.0467 919.9918 

VD (pu) 1.9737 0.0935 2.0425 2.0418 1.7959 

Lmax 0.1260 0.1488 0.1245 0.1258 0.1293 

PLosess (MW) 8.6121 4.7626 3.1006 2.8425 3.6494 

SI 14.3861 13.1574 13.0120 12.6494 11.2312 

 

 

Figure 1 : Fuel cost minimization. 

 

Figure 2 : Voltage deviation minimization. 
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Figure 3 : Lmax minimization. 

 

Figure 4 : Active power losses minimization. 

 

Figure 5 : SI minimization. 
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From Table 2, it can be seen that the best value of Cost is 799.0343 $/h and the worst one 

is 967.046 $/h obtained when the PLosses is minimized. The best value of VD obtained is 

0.0935 and the worst one which is obtained when Lmax is minimized. For Lmax the best value 

obtained is 0.1245 while the worst one is 0.1488 obtained when VD is optimized. Regarding 

losses, the best and worst values obtained are 2.8425 MW and 8.6121 MW, respectively. 

Finally, for SI, the best value reached after optimization is 11.2312 while the worst one that 

is obtained when the cost is minimized is 14.3861. 

In order to show the efficiency of the Jaya algorithm, the results obtained for the first case 

(since this case is the most widely investigated case) are compared with many other 

algorithms as shown in Table 3. It can be seen that, Jaya outperforms many other optimization 

algorithms in terms of the objective function found.  

Table 3: Comparison of CASE-1 simulation results with existing literature. 

Cost Optimization algorithm (abbreviation) Reference 

799.0343 Colliding Bodies Optimization (CBO)  

799.0349 Enhanced Colliding Bodies Optimization (ECBO) [23] 

799.0352 Improved Colliding Bodies Optimization (ICBO) [23] 

799.0353 Grenade Explosion Method (GEM) [23] 

799.0463 Teaching-Learning-Based Optimization (TLBO) [18] 

799.0715 Backtracking Search Optimization Algorithm (BSA) [22] 

799.0760 Biogeography-Based Optimization (BBO) [20] 

799.1116 Improved Electromagnetism-Like Mechanism (IEM) [29] 

799.1821 League Championship Algorithm (LCA) [30] 

799.1974 Differential Evolution (DE) [3] 

799.2891 Simulated Annealing (SA) [31] 

799.45 Black-Hole-Based Optimization (BHBO) [32] 

799.9217 Electromagnetism-Like Mechanism (EM) [21] 

800.078 Genetic Evolving Ant Direction HDE (EADHDE) [30] 

800.1579 Evolving Ant Direction Differential Evolution (EADDE) [33] 

800.2041 Particle Swarm Optimization (PSO) [34] 

800.41 Fuzzy Particle Swarm Optimization (FPSO) [35] 

800.72 Improved Genetic Algorithms (IGA) [36] 

800.805 Particle Swarm Optimization (PSO) [37] 

800.96 Fuzzy Genetic Algorithm (GAF) [36] 

801.21 Imperialist Competitive Algorithm (ICA) [36] 

801.843 Enhanced Genetic Algorithm (EGA) [38] 

802.06 Tabu Search (TS) [39] 

802.2900 Modified Differential Evolution Algorithm (MDE) [40] 

802.376 Improved Evolutionary Programming (IEP) [41] 

802.465 Evolutionary Programming  (EP) [42] 

802.62 Refined Genetic Algorithm  (RGA) [43] 

804.02 Gradient Method  (GM) [44] 

804.853 Genetic Algorithm (GA) [45] 

805.94 Colliding Bodies Optimization (CBO) [44] 
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4.2. Multi Objective Problem 

After having solved single objective OPF cases in the previous section, MOPF cases are 

considered in this section. It is important to highlight that since cost is the most important 

objective, it is considered as an objective function in all MOPF cases. The best compromise 

solutions found for all investigated MOPF cases are displayed in Table 4. 

CASE-6 gives the best compromise solution, which can be represented by the pair (Cost, 

VD) is (803.8962, 0.1648) and it can be compared with CASE-1 and CASE-2 represented by 

(799.0343, 1.9737) and (907.2475, 0.0935), respectively. It can be seen that this solution 

offers a good compromise between the two objectives. Moreover, the Pareto optimal set 

obtained for this case and sketched in Figure 6 has a good distribution between the two 

objectives. The points vary between (800.7102, 0.7323) and (824.4804, 0.1551).  

Table 4: Best compromise solutions found for MOPF cases using MOJaya. 

 CASE-6 CASE-7 CASE-8 CASE-9 CASE-10 CASE-11 CASE-12 CASE-13 CASE-14 CASE-15 CASE-16 

PG1 174.7 179.0 129.1 145.6 159.6 118.0 158.5 130.8 146.8 119.4 125.1 

PG2 48.5 48.5 50.9 43.9 55.6 65.0 36.9 42.0 55.1 59.3 52.9 

PG5 18.4 19.8 29.8 24.9 20.0 29.2 22.3 35.3 25.2 40.7 22.9 

PG8 29.3 18.6 35.0 35.0 35.0 22.1 35.0 30.3 32.0 31.3 32.5 

PG11 10.0 14.4 30.0 26.9 10.0 29.9 26.9 20.7 19.4 25.9 30.0 

PG13 12.0 12.0 14.3 14.4 12.0 25.6 12.0 29.9 12.0 12.0 26.7 

VG1 1.057 1.100 1.100 1.038 1.100 1.046 1.020 1.098 1.100 1.100 1.039 

VG2 1.039 1.081 1.085 1.023 1.082 1.034 1.001 1.080 1.086 1.088 1.020 

VG5 0.996 1.059 1.055 0.965 1.053 1.006 0.952 1.054 1.040 1.054 0.999 

VG8 1.000 1.061 1.070 0.988 1.024 0.994 0.979 1.059 1.045 1.060 1.010 

VG11 1.001 1.100 1.072 1.100 1.080 1.027 1.049 1.079 1.096 1.100 1.062 

VG13 1.036 1.100 1.071 1.096 1.045 1.004 1.044 1.100 1.100 1.095 1.018 

T11(6-9) 1.014 0.998 1.028 0.900 0.982 0.990 0.968 1.041 0.961 0.953 0.979 

T12(6-10) 0.919 0.900 0.947 0.900 0.980 0.969 0.951 0.943 0.900 1.018 0.992 

T15(4-12) 1.018 0.969 0.999 0.905 1.086 0.977 0.992 0.954 0.969 0.988 0.993 

T36(28-27) 0.978 0.932 1.022 0.900 0.900 0.947 0.951 0.922 0.917 0.994 0.900 

QC10 3.984 0.755 3.480 0.177 1.059 5.000 5.000 2.247 1.935 5.000 0.429 

QC12 3.066 3.706 4.298 0.000 5.000 2.591 0.000 0.279 0.000 2.718 1.738 

QC15 5.000 0.000 0.980 3.657 2.959 4.701 4.965 4.855 0.189 1.006 4.387 

QC17 5.000 5.000 5.000 5.000 0.000 2.664 3.080 2.541 0.000 4.289 2.045 

QC20 5.000 4.582 5.000 4.410 0.000 2.306 1.605 4.681 2.346 0.788 5.000 

QC21 0.586 5.000 0.000 5.000 4.531 4.839 4.973 4.027 3.677 2.745 2.866 

QC23 4.927 5.000 2.080 2.228 0.665 5.000 4.958 2.808 1.880 0.000 2.465 

QC24 3.835 0.000 5.000 4.606 0.236 3.392 3.101 0.280 0.010 5.000 4.035 

QC29 4.539 0.000 3.351 2.593 3.395 2.396 4.330 0.067 0.000 1.630 5.000 

Cost 
($/h) 

803.9 799.8 824.6 816.1 807.2 839.3 815.4 834.5 808.7 845.6 830.8 

VD (pu) 0.165 1.866 1.150 1.513 0.814 0.157 0.266 1.630 1.668 1.389 0.458 

Lmax 0.149 0.125 0.139 0.131 0.130 0.147 0.149 0.126 0.126 0.135 0.135 

PLosses 
(MW) 

9.489 8.885 5.620 7.328 8.814 6.347 8.228 5.649 7.122 5.173 6.663 

SI 14.308 14.836 12.846 12.637 16.537 13.549 13.151 14.228 13.759 12.491 14.329 
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The best compromise solution for CASE-7 is found to be (Cost=799.7642 and 

Lmax=0.1254) and it can be compared with CASE-1 and CASE-3 represented by (799.0343, 

0.1260) and (963.1270, 0.1245), respectively. The Pareto optimal set of solutions obtained 

for this case is sketched in Figure 7 

The best compromise solution found for CASE-8 is (Cost=824.5752 and PLosses=5.6196) 

and it can be compared with CASE-1 and CASE-4 represented by (799.0343, 8.6121) and 

(967.0467, 2.8425), respectively. The Pareto optimal set of solutions obtained for this case is 

plotted in Figure 8. 

The best compromise solution found for CASE-9 is (Cost=816.1213 and SI=12.6369) and 

it can be compared with CASE-1 and CASE-5 represented by (799.0343, 14.3861) and 

(919.9918, 11.2312), respectively. The Pareto optimal set of solutions obtained for this case 

is plotted in Figure 9. 

The same analysis can be made for the remaining cases. 

 

Figure 6 : Pareto optimal set of solutions for CASE-6. 

 

Figure 7 : Pareto optimal set of solutions for CASE-7. 
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Figure 8 : Pareto optimal set of solutions for CASE-8. 

 

Figure 9 : Pareto optimal set of solutions for CASE-9. 

5. Conclusion 

In this paper, a new multi-objective optimization algorithm has been developed based on 

Jaya algorithm and SPEA2 for solving the MOPF problem. The developed algorithm has 

been successfully implemented and applied to solve the OPF where sixteen cases have been 

investigated (5 single objective cases and 11 multi-objective cases). For single objective 

cases five objective functions have been considered. They include minimized fuel cost, 

enhanced voltage profile, increased voltage stability, active power losses reduction and 

improved system security. For multi-objective cases, the minimization of the total generation 

fuel cost is considered along with one or two other objectives. The Pareto optimal sets 

obtained for these cases has been sketched to show the performance of the developed 

algorithm. The obtained results show the quality of the solutions when one, two or three 

objective functions are considered.  
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