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Voltage sag event is one of the most important power quality disturbances in power systems. It 
can have affect on voltage quality and sensitive equipment in power systems. Detecting voltage 
sag events in power systems is a vital role in operating systems; therefore, this paper proposes 
an algorithm based on extended Kalman filter (EKF) for characterizing and detecting the 
parameters of voltage sag events accurately. A status-space modeling of voltage sag signals is 
defined to model voltage sag signal according to status-space modeling of EKF. The parameters 
of voltage sag events are estimated using the proposed method including voltage magnitude, 
estimation error, starting and ending times, duration time of the event. Matlab software is used 
to generate database of voltage sag waveforms modeled by a mathematical equation and then the 
waveforms are used to evaluate the proposed method. The simulation results of the proposed 
method are also compared with the simulation results of the root mean square (RMS) method to 
confirm the effectiveness of the proposed method in this paper. 
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1. Introduction 
 

Nowadays, industrial customers use more and more electronic devices such as frequency 

converter, inverter, rectifier, etc. to improve the efficiency of work and bring economic 

benefit. However, these devices are very sensitive to power quality disturbances such as 

harmonics, sag, swell, transients, overvoltage, etc. [1]-[4], [8]. Among these, voltage sag 

event is a type of power quality disturbance which is the most common and important in 

power systems. Moreover, voltage sag events are very harmful to sensitive equiment 

because they can have affect on the operation mode of many electrical devices at the point 

of common coupling. Voltage sag is a phenomenon that the voltage magnitude decreseases 

over a short period of time and is caused by short circuit problems, sudden increase in load, 

starting up large asynchronous motor, etc. [6]. Therein, the most common cause of voltage 

sag is short circuit in power systems. Short circuits on transmission lines or distribution 

lines have an affect on a large number of electrical customers. Short circuits on 

transmission lines affect sensitive electrical equipment that can range up to hundreds of 

kilometers far away the location of fault [5, 6]. 

There are many methods to detect voltage sag in power systems. Methods such as RMS 

method, peak voltage method, memory voltage method [7, 11], etc. are traditional methods. 

They are simple and easy to implement but they have limits in the detection and estimation 

of magnitude and duration of voltage sag events. In [7], short-time Fourier transforms is 

applied to detect and characterize the voltage events in power systems. The results show 

that the accuracy of this method depends on the selected window length. Wavelet transform 
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is a powerful signal processing tool for analyzing nonstationary signals. Discrete wavelet 

transform has been successfully applied to monitor the power quality disturbances in power 

systems [7, 9, 10]. The main disadvantage of wavelet transform, however, is that it depends 

on the selected mother wavelet, analysis level, and sensitivity to noise. Other modern 

methods are also used to analyze power quality disturbances such as Hilbert transform, 

Gabor transform, Gabor-Wigner transform, S transform, and Hilbert-Haung transform, but 

each method has its own advantages and disadvantages as analyzed in [8], [20]-[22]. 

Recently, there are several papers published about the dection and classification of 

power quality disturbances. The authors in [24] proposed a new method for detection and 

classification of single and combined power quality disturbances using a sparse signal 

decomposition on overcomplete hybrid dictionary matrix. The method in [24] can detect 

and classify single and combined PQ disturbances under noiseless and noisy conditions. 

The M-band Wavelet packet transform had been made to analyze power quality 

disturbances in [25]. The reference [26] also presented a technique for automated power 

quality disturbance detection and classification in power distribution system using cross-

correlation-based approach in conjunction with fuzzy logic. The method requires minimum 

number of features when compared with conventional approaches for identification of 

power quality disturbances. A hybrid approach to classify power quality disturbances by 

using support vector machine, discrete wavelet transform, and discrete Fourier transform 

was proposed in [27] to extract features from a good number of actual measured PQ events 

occurred in a transmission system. 

For the purpose of quickly and accurately detecting voltage sag events, EKF has many 

advantages over other methods. Because it can accurately determine voltage sag magnitude, 

starting and ending times of the event [7], [12]-[19], [23]. Moreover, EKF do not depend on 

other characteristics of voltage sag such as point on wave, phase jump angle, sag shape, etc. 

In this paper, the authors propose a method based on extended Kalman filter for detecting 

voltage sag events. The highlight of the proposed method in this paper is simple and 

implement easily. In addition, a status-space modeling based on papameters of voltage sag 

signals is defined to model voltage sag signal according to status-space modeling of EKF. 

Then the parameters of voltage sag signals are included in the modeling are determined by 

the EKF. 

The rest of this paper is organized as follows. The background of modelling of voltage 

sag signal, the RMS method and the algorithm of the proposed method based on EKF are 

explained in Section 2. In Section 3, simulation results are shown and are discussed in 

detail in order to evaluate the method proposed in Section 2. The comparision between of 

simulation results of proposed method and the RMS method is clearly presented in Section 

3. Finally, the conclusion is included in Section 4. 

 

2. Methods analysis 
 

2.1. The modeling of voltage sag signal 

 

The modelling of voltage sag signals is an important task in detecting their parameters 

accurately. Voltage sag and swell waveforms are generally shown in Figure 1(a). The times 

at which the voltage waveform starts and ends shifting are called the starting (
1t ) and 

ending time (
2t ) of event, respectively. Depending on the starting time of event (

1t ), the 
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voltage sag will have different shapes. The difference between the starting time of event 

(
1t ) and previous crossing by zero is called the point on wave. In Figure 1(a), the starting 

time of event (
1
t ) coincides with previous crossing by zero; therefore, the point on wave of 

the events is 00. The voltage magnitude decreases in the duration as shown in Figure 1(b). 
 

V (pu)

V (pu)

t

t

Normal voltage Voltage sag

t1 ts t2 te

a)

b)

Normal voltage

 
Figure 1. Voltage sag event: a) Waveform; b) Magnitude. 

In general, a voltage sag signal can be defined as a periodic nonsinusoidal volage 

waveform which can be written an infinite sum of harmonics as follows [7]: 

 

( ) ( )
∞

=

= + ω − α∑0
1

2 cosh s h
h

v n V V h nT  (1)

where: ( ) ( )= ω1 12 cos sv n V nT  (2)

is referred to the fundamental component of the voltage or simply the fundamental voltage 

with the RMS voltage 
1V . The phase angle of the fundamental voltage is taken as zero 

without any loss of generality. The term is as follows [7]: 

 

( ) ( )= ω − α2 cosh h s hv n V h nT  (3)

is referred to the harmonic h  of the th
h  harmonic component of the voltage; 

hV  is the 

RMS value of harmonic h ; 
h

a  is its phase angle with reference to the fundamental voltage. 

Note that there is no unique way to define the phase-angle difference between sine waves of 

different frequency [7]. 

 

2.2. The RMS method 

 

From the sampled voltages, one or more characteristics as a function of time are 

calculated for every recording. Most sensors use the RMS voltage as a function of time as 

the only event characteristic. This function is used to determine the retained voltage and the 

duration of the event [11, 16, 17]. The RMS voltage is calculated over a one-cycle interval 

and is updated every half cycle. 

To calculate the RMS voltage, the sampled voltages are squared and averaged over a 

window with a one-cycle duration [6, 7], as in (4): 
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( ) ( )
= + −

= ∑ 2
1 2

1

1
n

irms
i n N

V n v
N

 (4)

where  N  is the number of samples per cycle. 

iv  is the sampled voltage waveform. 

n  is 1, 2, 3, etc. 

The sampling should be synchronized to the power frequency. That is, the sampling 

frequency is not a fixed number of samples per second but a fixed number of samples per 

cycle. This synchronization to the power frequency (also referred to as “phase-locked-

loop”) is essential for the quantification of harmonic distortion and phase angle change 

calculations. For RMS voltage, the difference between synchronized and nonsynchronized 

measurements is small [6]. 

 

2.3. The proposed method based on EKF 

 

Kalman filters addressed so far in this section are designed to estimate the state vector in 

a linear system model. The reference [13] proposed an adaptive Kalman filter for the 

voltage sag detection. In the paper, the state covariance matrix is changed through the 

simulation to enhance the Kalman filter in order to detect the amplitude changing of the 

fundamental component. Howerver the voltage sag signal in [13] is assumed that it is linear 

model and its fundamental frequency is constant. Morever, the voltage sag signals 

simulated in the reference [13] are noiseless. In fact, the underlying system model is 

nonlinear; therefore, we need to apply the EKF through a linearization procedure in this 

paper [7]. Instead of state-space modeling of linear systems, nonlinear systems are modeled 

by the following two sets of equations. 

 

State equations: ( ) ( )( ) ( )+ = +1 ,n n n nx f x w  (5)

Observation equations: ( ) ( )( ) ( )= +,n n n nz h x v  (6)

To obtain a linear system, we assume that there exists a (local/global) nominal state 

trajectory ( )nx  and a (local/global) nominal output trajectory ( )nz and let the deviations 

be denoted by 

 

( ) ( ) ( )
( ) ( ) ( )

δ = −

δ = −

n n n

n n n

x x x

z z z
 (7)

 

Recalling the Taylor series expansion of a function ( )f y  in a neighborhood of 
0y y=  

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

′ ′′= + − + − +

+ − +

L
2

0 0 0 0 0

0 0

1

2
1

!

nn

n

f y f y f y y y f y y y

f y y y e y
n

 (8)

 

Assuming that ( )nx  and ( )nz  are close to the nominal state and output trajectories, the 

state and observation equations can be approximated by Taylor series expansion of f  and 



Doan Duc Tung et al: An Extended Kalman Filter for Detecting Voltage Sag Events in Power Sys 

 

 196

h  in a neighborhood about nominal values. Linear approximation can be obtained by 

retaining up to the first-order terms in the Taylor series expansion [7]. 

For the state and the observation equations in (6), this approximation yields the 

following state-space modeling: 

( ) ( ) ( )
( ) ( ) ( )

δ + = δ +

δ + = δ +

1

1

n

n

n n n

n n n

x A x w

z C x v
 (9)

where 
nA  and 

nC  are the Jacobian matrices of f  and h , defined as: 

 

( )( )
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L
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, N
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(10)
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n
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x

h x
C

x xxxx  
(11)

 
In order to estimate voltage sag parameters, a vector of status variables ( )( )4 4n ×x  is 

defined as (12) for modelling a nonlinear system. 

 

( )

( )
( )
( )
( )

( )
( )
( )

( )

   θ
   

ω   
= =   
   
   ϕ
   

1

2

3

4

m

x n

x n
n

x V n

n

n

n

n

nx

x  (12)

where: ( ) ( ) s
n n n Tθ ω= . 

Because the sampling time is very small so the voltage change can be ignored, the 

frequency and phase angle between two constitute samples. Therefore, we can estabilish the 

following equation: 

 

( ) ( )
( ) ( )

( ) ( )

ω + = ω

+ =

ϕ + = ϕ

1

1

1

m m

n n

V n V n

n n

 (13)

 

From (12) and (13), we assume that noise is omitted in the state-space modeling, we can 

express the relationship between state vectors ( )1n +x  and ( )nx  as follows: 
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( )
( )
( )

( )
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This implies: 

( )
( )
( )

( )

( ) ( )
( )
( )

( )

( )
( )
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 (15)

 

In fact, noise always exists in the state-space modelling; therefore, the equation (15) 

could be written simply arcoding to (5) as follows: 
 

( ) ( )( ) ( )+ = +1 ,n n n nx f x w  (16)

where: ( )nw  is the vector of noise which is assumed as a Gaussian noise with covariance 

matrix { ( ) ( )}
T

wE n n =w w Q ; 

We can see that (16) have the same format of (6); therefore, we can determine the 

function ( ( ), )n nh x  in (6) as follows: 

 

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )h ω + ϕ = += 3 1 4sin sin, m sn n n T n x n x n nn n xVx  (17) 

From (10) and (17) we get the matrix 
nA : 
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x x

f x
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 (18)

 

From (11) and (17), this implies 
nC : 

 
 

( )( )
( ) ( ) ( )( )

( ) ( )( )
( ) ( ) ( )( )=

 +
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 
 

+ 
 

+  

∂
= =

∂

3 1 4

1 4

3 1 4

cos

0

sin

cos

,

n

T
x n x n x

x n x

n

n n

n

nx n x n x
x

h x
C

x xxxx  (19)

 

Thus after using the hypotheses and transforms, the voltage sag signals could be 

expressed by a space-state modeling including a set of state equations (5) and observation 

equations (6). Therefore, we can apply the proposed method based on EKF for this 

modeling in order to estimate parameters of voltage sag/sell signals including: magnitude 

m
V , phase angle ϕ .  
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Figure 2 shows the algorithm of the proposed method based on EKF to estimate 

parameters of voltage sag events. 

 

3. Simulation results and discussion 
 

To evaluate the proposed method as mentioned in Section 2, this section uses the voltage 

sag waveforms by using a mathematics equation that shows all voltage sag parameters as 

follows [10]: 

( )
( )

( )
( )

    

 ω <


= ω + ϕ ≤ ≤


ω >

1

1 2

2

sin

sin

sin

m

sag

m

V t If t t

v t V t If t t t

V t If t t

 (20)

where: 
m

V  - the voltage magnitude before and after occurring a voltage sag event; 

  ω  - The frequency in radian; 

  
sagV  - the voltage magnitude durring the duration of voltage sag event; 

  ϕ  - The phase angle; 

  
1t  -  The starting time of the voltage sag; 

  
2

t  - The ending time of the voltage sag; 

   
2 1t t t∆ = − : The duration of the voltage sag. 

 

Voltage sag waveforms generated according to (20) using Matlab software have voltage 

sag magnitude of 0.5 pu and a duration of cycles (0.1 sec). It assumes that the voltage 

magnitude before and after the voltage sag is equal to 1.0 pu and the total time of the 

voltage waveform is simulated for a period of 10 cycles (0.2 sec). Moreover, the voltage 

signals can be accompanied by noise, so this paper studies the voltage sag signals added 

noise with different levels of signal-to-noise ratio (SNR) to evaluate the proposed method. 

Two cases are investigated in this paper as follows: 
 

Case 1 : Voltage sag without noise. 

A 0.5 pu voltage sag waveform which occurs in a duration of 5.0 cycles (0.1 sec) is 

shown in Figure 3(a). Applying the proposed method mentioned in Section 2 to analyze the 

waveform, the simulation results including estimation error as shown in Figure 3(b). The 

signal in Figure 3(b) is the error between the actual voltage sag signal and the estimation 

voltage signal by the proposed method. The estimation error result shows clearly the 

starting and ending time of the voltage sag event. There are large error values because of 

the sudden change in the voltage signal at these times. As a result of the state variables of 

the proposed method, the magnitude of the votlage sag is shown in Figure 3(c). In 

particular, the voltage magnitude estimated from the proposed method was compared with 

the voltage magnitude determined from the RMS method. The simulation results show that 

the proposed method detects voltage sag accurately. 
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Figure 2. The algorithm of the proposed method. 
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Case 2 : Voltage sag with Gausian noise. 

In fact, the actual voltage waveforms may be accompanied by noise; therefore, in order 

to evaluate the effectiveness of the proposed method in the detection of voltage sag 

waveforms with noise, this paper assumes that white Gaussian noise with three SNR levels 

including: SNR = 40 dB, SNR = 30 dB, and SNR = 20 dB will be added to the initial 

voltage sag waveform. The voltage sag waveforms with three SNR levels of noise are 

shown in Figure 4(a), Figure 5(a), and Figure 6(a), respectively. Depending on the SNR 

level of noise, the estimation error values of the proposed method are different as shown in 

Figure 4(b), Figure 5(b), and Figure 6(b), respectively. The voltage magnitudes of the 

voltage sag waveforms with three SNR levels of noise which are also determined using the 

proposed method and the RMS method are shown in Figure 4(c), Figure 5(c), and Figure 

6(c), respectively. Although the voltage sag waveform is added noise, the proposed method 

still accurately determines the magnitude of the voltage sag and the simulation result is also 

compared to the simulation result of the RMS method. 
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Figure 3. Case 1: a) Voltage waveform; b) Estimation error; c) Magnitude. 
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Figure 4. Case 2 (SNR = 40 dB); a) Voltage waveform; b) Estimation error; c) Magnitude. 
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Figure 5. Case 2 (SNR = 30 dB); a) Voltage waveform; b) Estimation error; c) Magnitude. 
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Figure 6. Case 2 (SNR = 20 dB); a) Voltage waveform; b) Estimation error; c) Magnitude. 

 

 

The aforementioned voltage sag/swell waveforms are studied for both cases of varying their 

magnitude and the point on wave in order to evaluate the effectiveness of the proposed 

method. The voltage sag waveforms with duration of 5.0 cycles (0.1 sec) have magnitudes 

varying from 0.1; 0.2; 0.3;...; 0.9 pu and the point on wave varying from 00; 450; 900;...; 

3600. Then the proposed method is applied to determine the duration of the waveforms. The 

3D plot results are shown in Figure 7. Simulation results show that the parameters of 

voltage sag waveform such as the magnitude, point on wave, etc. also have affect on the 

ability to determine the starting and ending times of the voltage sag event. In addition, the 

noise is also an external factor that we need to pre-process before applying the method 

proposed in this paper. 

 

 

4. Conclusion 

On the background of EKF method, this paper studied the modeling of voltage sag 

signals which consists of 4 variables which can express the charateristic of the state-space 

modeling of EKF method. Then, an algorithm based on EKF method is proposed for 

detecting the parameters of voltage sag events. The results obtained from the proposed 

method are the magnitude, the starting time, and the ending time of voltage sag event. This 

paper also analyzed and evaluated the effectiveness of the proposed method based on 

voltage sag signals which are modeled by mathematical equations. The results of the 

proposed method are also compared with the RMS method to confirm the effectiveness of 

the proposed method. In addition, Gaussian noise with three SNR levels is added to the 

voltage sag waveforms in order to test and evaluate the proposed method for detecting 
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voltage sag events in condition with noise. The simulation results show that the proposed 

method detect voltage sag event accurately in both cases of with and without noise. 
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Figure 7. The duration of voltage sag events using the proposed method; a) Sag events 

without noise; b) Sag events with Gaussian noise (SNR = 40 dB); c) Sag events with 

Gaussian noise (SNR = 30 dB); d) Sag events with Gaussian noise (SNR = 20 dB). 
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