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In this work, the most common problem of the modern power system named optimal power flow 
(OPF) is optimized using the novel meta-heuristic optimization Multi-verse Optimizer(MVO) 
algorithm. In order to solve the optimal power flow problem, the IEEE 30-bus and IEEE 57-bus 
systems are used. MVO is applied to solve the proposed problem. The problems considered in 
the OPF problem are fuel cost reduction, voltage profile improvement, voltage stability 
enhancement. The obtained results are compared with recently published meta-heuristics. 
Simulation results clearly reveal the effectiveness and the rapidity of the proposed algorithm for 
solving the OPF problem.   
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1. Introduction 

At the present time, The optimal power flow (OPF) is a very significant problem and 

most focused objective for power system planning and operation [1]. The OPF is the 

elementary tool which permits the utilities to identify the economic operational and many 

secure states in the system [2], [3]. The OPF problem is one of the utmost operating desires 

of the electrical power system [4]. The prior function of OPF problem is to evaluate the 

optimum operational state for bus system by minimizing each objective function within the 

limits of the operational constraints like equality constraints and inequality constraints [5]. 

Hence, the OPF problem can be defined as an extremely non-linear and non-convex 

multimodal optimization problem [6]. 

From the past few years too many optimization techniques were used for the solution of 

the OPF problem. Some traditional methods are used to solve the proposed problem have 

been suffered from some limitations like converging at local optima, not suitable for binary 

or integer problems and also have the assumptions like the convexity, differentiability, and 

continuity [7]. Hence, these techniques are not suitable for the actual OPF situation [8], [9]. 

All these limitations are overcome by meta-heuristic optimization methods like genetic 

algorithm (GA), particle swarm optimization algorithm (PSO), ant colony algorithm 

(ACO), differential evolution algorithm (DEA),harmony search algorithm (HSA) and 

biogeography-based Optimization (BBO) [10], [11] and [12], moth-flame optimizer (MFO) 

[13]. 
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In this paper, a newly introduced meta-heuristic optimization technique named Multi-

verse Optimizer (MVO) is applied to solve the OPF problem. The MVO technique is a 

biological and sociological inspired algorithm. This technique is based on three concepts in 

cosmology: white hole, black hole, and wormhole. The capabilities of MVO are finding the 

fast convergence rate due to the use of roulette wheel selection, can handle continuous and 

discrete optimization problems. 

In this work, the MVO is applied on IEEE 30-bus and IEEE 57-bus systems [15] to 

solve the OPF [16-20] problem. There are different objective cases considered in this paper 

that have to be optimize using Multi-verse Optimizer (MVO) technique are fuel cost 

reduction, voltage stability improvement, and voltage deviation minimization and others. 

The result shows the optimal adjustments of control variables in accordance with their 

limits. The results obtained using MVO technique has been compared with Particle Swarm 

Optimization (PSO) and Firefly Algorithm (FA) techniques. The results show that MVO 

gives better optimization values as compared to other methods which prove the 

effectiveness of the proposed algorithm. 

 

2. Optimal Power Flow Problem Formulation 

As specified before, OPF is Optimized power flow problem which provides the optimal 

values of control (independent) variables by minimizing a predefined objective function 

with respect to the operating bounds of the system [1]. The OPF problem can be 

mathematically expressed as a non-linear constrained optimization problem as follows [1]: 

Minimize f(a,b)                                                                                                                   (1) 

Subject to s(a,b)=0                                                                                                              (2) 

And h(a,b)≤0                                                                                                                       (3) 

Where, a is vector of state variables, b is vector of control variables, f(a,b) is objective 

function, s(a,b) is different equality constraints set, h(a,b) different inequality constraints 

set. 

2.1 Variables 

2.1.1 Control variables 

The control variables should be adjusted to satisfy the power flow equations. For the 

OPF problem, the set of control variables can be formulated as [1], [5]: 

2 1 1 1[ ], , ,
NTrNLB NLB NCom

T

G G G G C CP P V V Q Q T Tb = … … … …                                                      (4) 

Where,
GP and 

GV  are the real power output at the PV (Generator) buses excluding at the 

slack and (Reference) bus and magnitude of Voltage at PV (Generator) buses, 

respectively.
CQ and T are the shunt VAR compensation and tap settings of the transformer. 

NLB, NTr, NCom No. of generator units, No. of tap changing transformers and No. of 

shunt VAR compensation devices, respectively. 

2.1.2 State variables 

There is a need for variables for all OPF formulations for the characterization of the 

Electrical Power Engineering state of the system. So, the state variables can be formulated 

as [1], [5]: 

11 1 1
[ ], , ,

NLB NLBL LG G G
T

l l
Nline

P V V Q Q S Sa = … … …                                                            (5) 
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Where, 
1GP and 

LV  are the real power generation at the slack bus and magnitude of 

Voltage at PQ (Load) buses. 
LV  is magnitude of Voltage at PQ (Load) buses, 

GQ  is 

reactive power generation of all generators and lS  represent the transmission line loading 

or line flow. NLB, Nline represents the No. of (PQ) load buses and the No. of transmission 
lines, respectively. 
 

2.2 Constraints 

There are two OPF constraints named inequality and equality constraints. These 

constraints are explained in the following sections. 

2.2.1 Equality constraints  

The physical condition of the power system is described by the equality constraints of 

the OPF. These equality constraints are basically the power flow equations which can be 

explained as follows [1], [5].  

2.2.1.1 Real power constraints 

The real power constraints can be formulated as follows: 

[ ( ) ( )] 0
N B

i j ij ij ijD iG i
J i

ijP P V V G C o s B Sin
=

− − + =∑ δ δ                                                      (6) 

2.2.1.2 Reactive power constraints 

The reactive power constraints can be formulated as follows: 

[ ( ) ( )] 0
N B

i j ij ij ij ijD iG i
J i

Q Q V V G C o s B S in
=

− − + =∑ δ δ
                                                (7) 

Where, jij i= −δ δδ                                                                                                                       

Where, NB is total No. of buses, GP and GQ  are active and reactive power output, DP  

and DQ are active and reactive power load demand, ijB and ijG are the elements of the 

admittance matrix ( )ij ij ijY G jB= +  shows the susceptance and conductance between bus i 

and bus j, respectively. 

2.2.2 Inequality constraints  

The boundaries of power system devices together with the bounds created to surety 

system security are given by inequality constraints of the OPF [5], [6]. 

2.2.2.1 Generator constraints.  

For all generating units including the slack bus: voltage, active power, and reactive 

power outputs should be constrained by their minimum and maximum bounds as follows: 

,
i i i

upperl er
G

o
G G

wV V V≤ ≤ i=1,…,NLB                                                                                   (8) 

i i i

upperlower
G G GP P P≤ ≤ ,i=1,…,NLB                                                                                    (9) 

i i i

lower upper

G G GQ Q Q≤ ≤ ,i=1,…, NLB                                                                                     (10) 

2.2.2.2 Transformer constraints 

Transformer tap settings should be constrained inside their stated minimum and 

maximum bounds as follows: 

i i i

lower upper

G G GT T T≤ ≤ ,  i=1,…,NLB                                                                                      (11) 
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2.2.2.3 Shunt VAR compensator constraints  

Shunt VAR compensators need to be constrained by their minimum and maximum 

bounds as follows: 

i i i

lower upper

C GC CQ Q Q≤ ≤ ,  i=1,…,NLB                                                                                  (12) 

2.2.2.4 Security constraints.  

These comprise the limits of the magnitude of the voltage at PQ buses and 

transmission line loadings. Voltage for every load (PQ) bus should be limited by its 

minimum and maximum operational bounds. Line flow over each transmission line should 

not exceed its maximum loading limit. So, these limitations can be mathematically 

expressed as follows [7]: 

i i i

upperlower
L L LV V V≤ ≤ ,i=1,…,NLB                                                                                    (13) 

i i

upper
l lS S≤ ,i=1,…,Nline                                                                                                  (14) 

 The control variables are self-constraint. The inequality constrained of state variables 

comprises a magnitude of load (PQ) bus voltage, active power production at reference bus, 

reactive power production, and line loading may be encompassed by an objective function 

in terms of quadratic penalty terms. In which, the penalty factor is multiplied by the square 

of the disregard value of state variables and is included in the objective function and any 

impractical result achieved is declined [7]. 

Penalty function can be mathematically formulated as follows:  

( )
1 1

2
2 2

1 1 0

( ) ( )
i i i i

NLB NGen Nline

aug P V L LG G Q S l l
i i i

lim lim maxJ J P P V V S S
= = =

= + ∂ − + ∂ − + ∂ + ∂ −∑ ∑ ∑
(15) 

Where, , ,  ,P V Q S =∂ ∂ ∂ ∂  penalty factors  

limU is boundary value of the state variable U.  

If U is greater than the maximum limit, 
limU takings the value of this one, if U is lesser 

than the minimum limit 
limU takings the value of that limit. This can be shown as follows 

[7]: 

 ;

 ; 

upper upper
lim

lower lower

U
U

U

U U

U U
=




>

<
                                                                                       (16) 

3.Multi-Verse Optimizer 

Three notions such as black hole, white hole and wormhole shown in Figure. 1 are the 

main motivation of the MVO algorithm. These three notions are formulated in 

mathematical models to evaluate exploitation, exploration and local search, respectively. 

The white hole assumed to be the main part to produce universe. Black holes are attracting 

all due to its tremendous force of gravitation. The wormholes behave as time/space travel 

channels in which objects can moves rapidly in universe. Main steps uses to the universes 

of MVO [15]: 

a. If the inflation rate is greater, the possibility of presence of white hole is greater. 

b. If the inflation rate is greater, the possibility of presence of black hole is lower. 

c. Universes having greater inflation rate are send the substances through white holes. 

d. Universes having lesser inflation rate are accepting more substances through black 

holes. 
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e. The substances/objects in every universe can create random movement in the 

direction of the fittest universe through worm holes irrespective to the inflation 

rate. The objects are move from a universe having higher inflation rate to a 

universe having lesser inflation rate. It can assure the enhancement of the average 

inflation rates of the entire cosmoses with the iterations. In each iteration, the 

universes are sorted according to their inflation rates and select one from them 

using the roulette wheel as a white hole. The subsequent stages are used for this 

procedure. Assume that 

1 2

1 1

1 2

2 2 2

1 2

1. .

. .

. . . . .

. . . . .

. .

 
 
 
 =
 
 
 
 

d

d

n n n

dx x x

x x x

U

x x x

                                                                                                  (17) 

Where, d shows the no. of variables and n shows the no. of candidate solutions: 

 ; 1 ( )

 ; 1 ( )

<

≥





=
j

k

j

i

j

i

x

x

r NI Ui

r NI Ui
x                                                                                                (18) 

Where, 
j

ix shows the jth variable of ith universe, Ui indicates the ith universe, NI(Ui) is 

normalized inflation rate of the ith universe, r1 is a random no. from [0, 1], and 
j

kx shows 

the jth variable of kth universe chosen through a roulette wheel. To deliver variations for all 

universe and more possibility of increasing the inflation rate by worm holes, suppose that 

worm hole channels are recognized among a universe and the fittest universe created until 

now. This mechanism is formulated as: 

(( ) 4 ); 3 0.5
; 2

(( ) 4 ); 3 0.5

; 2

 + × − × + <
<

− × − × + ≥= 


≥

j j j j

j
j j j ji

j

i

X TDR ub lb r lb r
r WEP

X TDR ub lb r lb rx

x r WEP

                                                      (19) 

Where Xj shows jth variable of fittest universe created until now, lbj indicates the min limit 

of jth parameter, ubj indicates max limit of jth parameter, 
j

ix shows the jth parameter of ith 

universe, and r2, r3, r4 are random numbers from [0, 1]. It can be concluded by the 

formulation that wormhole existence probability (WEP) and travelling distance rate (TDR) 

are the chief coefficients. The formulation for these coefficients are given by: 

max min
min

− 
= + ×  

 
WEP l

L
                                                                                          (20) 

Where, l shows the present run, and L represent maximum run number/iteration, min is the 

minimum 0.2 in this paper, max is the maximum 1 in this paper. 
1/

1/
1= −

p

p

l
TDR

L
                                                                                                                    (21) 

Where, p states the accuracy of exploitation with the iterations. If the p is greater, the 

exploitation is faster and more precise. The complexity of the MVO algorithms based on 

the no. of iterations, no. of universes, roulette wheel mechanism, and universe arranging 

mechanism. The overall computational complexity is as follows:  

( ) ( ( ( ) ( ( _ ))))= + × ×O MVO O l O Quicksort n d O roulette wheel                                         (22) 
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2
( ) ( ( log ))= + × ×O MVO O l n n d n                                                                         (23) 

Where, n shows no. of universes, l shows the maximum no. of run/iterations, and d 

shows the no. of substances. 

 

 

 
 

Figure. 1: Basic principle of MVO 

 

4. Application and results 

The MVO technique has been implemented for the OPF problem solution for standard 

IEEE 30-bus and IEEE 57-bus test systems and for a number of cases with dissimilar 

objective functions. The developed software program is written in MATLAB R2014b 

computing surroundings and used on a 2.60 GHz i5 PC with 4 GB RAM. In this work, the 

MVO population size or number of ants is selected to be 40, and the maximum number of 

iteration is 500.  

4.1 IEEE 30-bus test system 

With the purpose of elucidating the effectiveness of the suggested MVO algorithm, it 

has been verified on the standard IEEE 30-bus test system. The standard IEEE 30-bus test 

system selected in this work has the following characteristics [7], [14]: six generating units 
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at buses 1,2,5,8,11 and 13, four regulating transformers with off-nominal tap ratio between 

buses 4-12, 6-9, 6-10 and 28-27 and nine shunt VAR compensators at buses 

10,12,15,17,20,21,23,24 and 29. 

In addition, generator cost coefficient data, the line data, bus data, and the upper and 
lower bounds for the control variables are specified in [14]. 
In given test system, five diverse cases have been considered for various purposes and all 
the acquired outcomes are given in Table 2. The very first column of this table denotes the 
optimal values of control variables found where: 

- PG1 through PG6 and VG1 through VG6 signifies the power and voltages of generator 1 

to generator 6. 

- T4-12, T6-9, T6-10 and T28-27 are the transformer tap settings comprised between buses 4-

12, 6-9, 6-10 and 28-27. 

- QC10, QC12, QC15, QC17, QC20, QC21, QC23, QC24 and QC29 denote the shunt VAR 

compensators coupled at buses 10, 12, 15, 17, 20, 21, 23, 24 and 29. 

Further, fuel cost ($/h), real power losses (MW), reactive power losses (MVAR), voltage 

deviation and Lmax represent the total generation fuel cost of the system, the total real 

power losses, the total reactive power losses, the load voltages deviation from 1 and the 

stability index, respectively. Other particulars for these outcomes will be specified in the 

next sections.   

Case 1: Minimization of generation fuel cost. 
The very common OPF objective that is generation fuel cost reduction is considered in 

the case 1. Therefore, the objective function Y represents the total fuel cost of all generating 
units and it is calculated by following equation [1]: 

1

($ / )
NLB

i
i

Y f h
=

= ∑                                                                                                                 (24)                        

Where, if is the fuel cost of the 
thi  generator. 

if , may be formulated as follow: 

2 ($ / )i i i iGi Gif u v P w P h= + +                                                                                              (25)                        

Where, iu , iv and iw are the basic, the linear and the quadratic cost coefficients of the 

thi generator, respectively. The cost coefficients values are specified in [14]. 

 
 The variation of the total fuel cost over iterations is presented in Figure.2. It 

demonstrates that the suggested method has outstanding convergence characteristics. The 

optimal values of control variables obtained for case 1 are specified in Table 1. By means 

of the same settings i.e. control variables boundaries, initial conditions, and system data, the 

results achieved in case 1 with the MVO technique are compared to some other methods 

and it displays that the total fuel cost is greatly reduced compared to the initial case [7]. 

Quantitatively, it is reduced from 901.951$/h to 799.242$/h. The comparison of fuel cost 

obtained with different methods is shown in Table 2 which displays that the results 

obtained by MVO are better than the other methods. 
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Figure.2 Fuel cost variation for Case 1. 

 

Case 2: Voltage profile improvement. 
Bus voltage is considered as most essential and important security and service 

excellence indices [7]. Here the goal is to reduce the fuel cost and increase voltage profile 
simultaneously by reducing the voltage deviation of PQ (load) buses from the unity 1.0 p.u. 
Hence, the objective function may be formulated by following equation [5]: 

cost voltage deviationY Y wY −= +                                                                                                 (26)                        

Where, w is an appropriate weighting factor, to be chosen by the user to offer a weight or 

importance to each one of the two terms of the objective function. costY and 

voltage deviationY − are specified as follows [5]: 

cos
1

NLB

t i
i

Y f
=

= ∑                                                                                               (27) 

_
1

| 1.0 |
NLB

ivoltage deviation
i

Y V
=

= −∑                                                                                            (28)   

The variation of voltage deviation over iterations is sketched in Figure.3. It demonstrates 

that the suggested method has good convergence characteristics. The statistical values of 

voltage deviation obtained with different methods are shown in Table 3 which displays that 

the results obtained by MVO are better than the other methods. The optimal values of 

control variables obtained by MVO algorithm for case 2 are specified in Table 1. By means 

of the same settings, the results achieved in case 2 with the MVO technique are compared 

to some other methods and it displays that the voltage deviation is greatly reduced 

compared to the initial case [7]. It has been made known that the voltage deviation is 

reduced from 1.1496 p.u. to 0.1056 p.u. using MVO technique. 
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Table 1: Optimal values of control variables. 

Control variable Min Max Case1 Case2 Case3 Case4 Case5 

PG1 (MW) 50 200 177.349 177.983 184,86 51.327 51.348 

PG2 (MW) 20 80 48.712 48.765 50,563 80.000 80.000 

PG5 (MW) 15 50 21.278 21.475 21,97 50.000 50.000 

PG8 (MW) 10 35 20.962 20.158 10 35.000 35.000 

PG11 (MW) 10 30 11.836 12.932 13,733 30.000 29.998 

PG13 (MW) 12 40 12.000 12.029 12,1038 40.000 40.000 

V1(p.u) 0.95 1.1 1.100 1.045 1,099 1.100 1.100 

V2(p.u) 0.95 1.1 1.088 1.027 1,071 1.097 1.100 

V5(p.u) 0.95 1.1 1.061 1.010 1,028 1.081 1.093 

V8(p.u) 0.95 1.1 1.070 1.004 1,021 1.088 1.100 

V11(p.u) 0.95 1.1 1.100 1.065 1,094 1.100 1.100 

V13(p.u) 0.95 1.1 1.100 0.996 1,1 1.100 1.100 

T6–9 0 1.1 0.964 1.077 0,921 1.037 1.000 

T6–10 0 1.1 1.045 0.900 0,9458 0.901 0.937 

T4–12 0 1.1 1.038 0.928 0,938 0.994 0.993 

T28–27 0 1.1 0.990 0.965 0,925 0.987 0.983 

Qc10(Mvar) 0 5 3.525 4.973 5 0.306 0.775 

Qc12(Mvar) 0 5 1.770 0.716 5 3.082 3.857 

Qc15(Mvar) 0 5 2.029 0.382 5 4.552 3.668 

Qc17(Mvar) 0 5 2.028 0.434 5 0.815 2.923 

Qc20(Mvar) 0 5 3.514 3.092 4,997 2.787 4.170 

Qc21(Mvar) 0 5 2.415 4.398 5 1.106 2.113 

Qc23(Mvar) 0 5 1.551 5.000 5 4.987 3.390 

Qc24(Mvar) 0 5 2.997 3.000 5 2.308 5.000 

Qc29(Mvar)   3.991 2.234 5 3.825 2.952 

Fuel cost ($/h) - - 799.242 803.908 802,466 967.143 967.250 

Ploss (MW) - - 8.667 9.908 9,834 2.881 2.948 

QLoss (MVAR) - - -2.936 5.641 7,66466 -24.614 -25.038 

Vd - - 1.591 0.1056 1,8607 1.975 2.041 

Lmax - - 0.120 0.137 0,11467 0.118 0.117 
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Table 2: Comparison of fuel cost obtained with different algorithms. 

Method Fuel Cost Method Description 

MVO 799.242 Multi-verse Optimizer 

FA 799.766 Firefly Algorithm 

PSO 799.704 Particle Swarm Optimization 

DE [6] 799.289 Differential Evolution  

BHBO [7] 799.921 Black Hole Based  Optimization 
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Figure.3 Variations of fuel cost and voltage deviations for Case 2. 

 

Table 3: Comparison of voltage deviations obtained with different algorithms. 

Method Voltage Deviation Method Description 

MVO 0.1056 Multi-verse Optimizer 

FA 0.1474 Firefly Algorithm 

PSO 0.1506 Particle Swarm Optimization 

DE 0.1357 Differential Evolution  

BHBO [7] 0.1262 Black Hole Based  Optimization 

 

Case 3: Voltage stability enhancement  

Presently, the transmission systems are enforced to work nearby their safety bounds, 

because of cost-effective and environmental causes. One of the significant characteristics of 

the system is its capability to retain continuously tolerable bus voltages to each node 

beneath standard operational environments, next to the rise in load, as soon as the system is 

being affected by disturbance. The unoptimized control variables may cause increasing and 

unmanageable voltage drop causing a tremendous voltage collapse [5]. Hence, voltage 

stability is inviting ever more attention. By using various techniques to evaluate the margin 
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of voltage stability, Glitch and Kessel have introduced a voltage stability index called L-

index depends on the viability of load flow equations for every node [25]. The L-index of a 

bus shows the probability of voltage collapse circumstance for that particular bus. It differs 

between 0 and 1 equivalent to zero load and voltage collapse, respectively. 

 For the given system with NB, NGen and NLB buses signifying the total no. of buses, 

the total no. of generator buses and the total no. of load buses, respectively. The buses can 

be distinct as PV (generator) buses at the head and PQ (load) buses at the tail as follows 

[5]: 

[ ]L L LL LG L

bus

G G GL GG G

I V Y Y V
Y

I V Y Y V
= =

       
       
       

                                                                       (29) 

Where, 
LL

Y , 
LG

Y , 
GL

Y  and
GG

Y are co-matrix of busY . The subsequent hybrid system of 

equations can be expressed as: 

[ ]L L LL LG L

G G GL GG G

H
I V V

V I H H I

H H
= =

       
       
       

                                                                                (30) 

Where matrix H is produced by the partially inversing of 
busY , 

LL
H , 

LG
H , 

GL
H and 

GG
H are co- matrix of H, 

G
V , 

G
I , 

L
V  and 

L
I are voltage and current vector of Generator 

buses and load buses, respectively. 
The matrix H is given by: 

[ ] 1LL LL LG

LL LL

GL LL GG GL LL LG

Z Z Y
H Z Y

Y Z Y Y Z Y

−
− 

= = 
− 

                                                          (31) 

Hence, the L-index denoted by jL of bus j is represented as follows: 

1

1 i
j LG

i j
ji

NLB v
L H

v=

= − ∑  j=1,2…,NL                                                                                   (32) 

Hence, the stability of the whole system is described by a global indicator maxL  which 

is given by [7], 

max max( )jL L=         j=1,2…,NL                                                                                       (33) 

The system is more stable as the value of maxL  is lower. 

The voltage stability can be enhanced by reducing the value of voltage stability 
indicator L-index at every bus of the system. [7]. 
Thus, the objective function may be given as follows: 

cos _ _t voltage Stability EnhancementY Y wY= +                                                                       (34) 

Where, cos
1

NLB

t i
i

Y f
=

= ∑                                                                                                (35) 

m ax_ _voltage stability enhancementY L=                                                                                  (36) 

The variation of the Lmax index over iterations is presented in Figure. 4. The results 

obtained with different methods are shown in Table 4 which displays that MVO method 

gives better results than the other methods. The optimal values of control variables obtained 

by MVO algorithm for case 3 are given in Table 1. After applying the MVO technique, it 

appears from Table 1 that the value of Lmax is considerably decreased in this case 

compared to initial case [7] from 0.1723 to 0,11467. Thus, the distance from breakdown 

point is improved. 
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Figure.4  Variations of fuel cost and stability index for Case 3. 

Table 4: Comparison of Lmax index obtained with different algorithms. 

Method Lmax Method Description 

MVO 0,11467 Multi-verse Optimizer 

FA 0.1184 Firefly Algorithm 

PSO 0.1180 Particle Swarm Optimization 

DE [6] 0.1219 Differential Evolution 

BHBO [7] 0.1167 Black Hole Based  Optimization 

 

Case 4: Minimization of active power transmission losses 

In the case 4 the Optimal Power Flow objective is to reduce the active power 
transmission losses, which can be represented by power balance equation as follows [7]: 

1 1 1
i Gi Di

NLB NLB NLB

i i i

J P P P
= = =

= = −∑ ∑ ∑                                                                                            (37) 

Figure.5 shows the tendency for reducing the total real power losses objective function 

using the MVO algorithm. The active power losses obtained with different techniques are 

shown in Table 5 which made sense that the results obtained by MVO give better values 

than the other methods. The optimal values of control variables obtained by the proposed 

algorithm for case 4 are displayed in Table 1. By means of the same settings the results 

achieved in case 4 with the MVO technique are compared to some other methods and it 

displays that the real power transmission losses are greatly reduced compared to the initial 

case [7] from 5.821 MW to 2.881 MW.  
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Figure.5 Variations of active power transmission losses for Case 4. 

 

Table 5: Comparison of active power transmission losses obtained with different 

algorithms. 

Method Active Power Loss Method Description 

MVO 2.881 Multi-verse Optimizer 

FA 3.307 Firefly Algorithm 

PSO 3.026 Particle Swarm Optimization 

BHBO [7] 3.503 Black Hole Based  Optimization 

 

 

Case 5: Minimization of reactive power transmission losses 
 The accessibility of reactive power is the main point for static system voltage stability 
margin to support the transmission of active power from the source to sinks [7]. 
Thus, the minimization of VAR losses are given by the following expression: 

1 1 1
i Gi Di

NLB NLB NLB

i i i

J Q Q Q
= = =

= = −∑ ∑ ∑                                                                                              (38) 

It is notable that the reactive power losses are not essentially positive. The variation of 

reactive power losses shown in Figure.6. It demonstrates that the suggested method has 

good convergence characteristics. The values of reactive power losses obtained with 

different methods are shown in Table 6, which displays that the results obtained by MVO 

are better than the other methods. The optimal values of control variables obtained by the 

proposed algorithm for case 5 are given in Table 1. It is shown that the reactive power 

losses are greatly reduced compared to the initial case [7] from -4.6066 to -25.038 using 

MVO technique. 
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Figure.6 Variations of reactive power transmission losses for Case 5. 

Table 6 Comparison of reactive power losses obtained with different algorithms. 

Method Reactive Power Loss Method Description 

MVO -25.038 Multi-verse Optimizer 

FA -20.464 Firefly Algorithm 

PSO -23.407 Particle Swarm Optimization 

BHBO [7] -20.152 Black Hole Based  Optimization 

 

4.2 IEEE 57-bus system 

To prove the substance and robustness of the proposed approach in solving OPF 

problem in large power system, the IEEE 57-bus with 80 branch systems has been proposed 

in this party, which has a 34 control variables as follows: 7 generator  voltage magnitudes, 

17 transformer-tap settings, and 3 bus shunt reactive compensators. The maximum voltage 

magnitude of all bus is 1.1 p.u and the minimum voltage magnitude is 0.95. The total 

system demand is 12.508 p.u. for the active power, and 3.364 p.u for the reactive power at 

100 MVA base, bus 1 is taken as slack bus.  The values of coefficients fuel costs of the 

seven generators are presented in [14]. Figure.7 shows that the MVO algorithm has 

converged to the global optimal solution after 200 iterations. It is obvious that MVO 

increases the convergence speed which obtains better final results. The proposed methods 

give us the results shown in Table 7. We compared with other method in literature in Table 

8. The best fuel cost obtained by the proposed MVO is 41678.0847 $/h, that is better than 

reported in [21-24]. This comparison shows the effectiveness and the robustness of the 

proposed algorithm. 
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Table 7. Optimal settings of control variables for IEEE 57-bus system. 

Control variable (p.u.) MVO 

P1 (p.u)  142,0727988  

P2 (p.u)  85,29053212  

P3 (p.u)  44,10864  

P6 (p.u)  72,56587168  

P8 (p.u)  461,5017056  

P9 (p.u)  100  

P13 (p.u)  360,4355589  

V1 (p.u)  1,038860619  

V2 (p.u)  1,043946394  

V3 (p.u)  1,0330335  

V6 (p.u)  1,051732939  

V8 (p.u)  1,065709946  

V9 (p.u)  1,040972354  

V13 (p.u)  1,022939856  

T4-18  0,970174762  

T4-18  0,9  

T21-20  0,903747067  

T24–25  1,1  

T24–25  1,003408012  

T24–26  1,08574421  

T7–29  0,951256711  

T34–32  1,046256308  

T11–41  0,971718857  

T15–45  1,086471491  

T14–46  0,994206114  

T10–51  1,075111678  

T13–49  1,1  

T11–43  0,983198039  

T40–56  1,1  

T39–57  1,1  

T9–55  1,1  

QC18 (MVAr)  10,16384811  

QC25 (MVAr)  12,00183602  

QC53 (MVAr)  11,11143839  

Fuel cost ($/h) 41678.0847 

Ploss (MW)   15.1751  
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Figure.7. Fuel cost variation for IEEE 57-bus system.. 

 
Table 8.Comparison of results for a IEEE 57-bus system. 

Algorithms Fuel cost ($/h) 

MVO 41678.0847 

TLBO[21] 41695.6626 

LDI-PSO[22] 41815.5035 

GSA[23] 41695.8717 

ABC[22] 41693.9589 

EADDE[24] 41713.62 

 
Statistically: According to the all results obtained through the minimization of  treated 

objectives, I wish to note that the process has run 50 times with different initial solutions 

for case 1, Table 9 indicates that algorithm offers the minimum values of best, worst, 

median values of fuel cost, and the average of the  average total computational times. we 

can show that time of proposed MVO method is low, as well as note the difference between 

the minimum and the worst is very close, this is also shown by the low values of the 

standard deviations calculated from it we can say that the proposed method is robust. 

 
 

Table 9. Statistical results for case 1. 

Methods Best Median Worst STD 
Avr CPU time 
(s) 

MVO 799.2420 799.3776 799.7820 0.1833 24.87 

 

 

 

 



B.Bentouati et al: A solution to the Optimal Power Flow using Multi Verse Optimizer 
 

 

 732 

5. Conclusion 

In this study, Multi-verse Optimizer has been presented and applied to solving the OPF 

problem. The program can treat different objectives in order to: Minimization of generation 

fuel cost, voltage profile improvement, voltage stability enhancement , minimization of 

active power transmission losses, minimization of reactive power transmission losses. 

Through the applications that made on the IEEE 30-bus and IEEE 57-bus test systems, the 

solutions obtained from the MVO approach has good convergence characteristics and gives 

the better results compared to FA and PSO methods and other method reported in litterateur 

which confirm the effectiveness of proposed algorithm. 
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